

Data Management:
Databases - MySQL

Introduction for Researchers

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 2

How to Use this User Guide

This handbook accompanies the taught sessions for the course. Each section
contains a brief overview of a topic for your reference and then one or more
exercises.

Exercises are arranged as follows:

 A title and brief overview of the tasks to be carried out;

 A numbered set of tasks, together with a brief description of each;

 A numbered set of detailed steps that will achieve each task.

Some exercises, particularly those within the same section, assume that you have
completed earlier exercises. Your teacher will direct you to the location of files that
are needed for the exercises. If you have any problems with the text or the exercises,
please ask the teacher or one of the demonstrators for help.

This book includes plenty of exercise activities – more than can usually be
completed during the hands-on sessions of the course. You should select some to
try during the course, while the teacher and demonstrator(s) are around to guide
you. Later, you may attend follow-up sessions at IT Learning Centre (ITLC) called
Computer8, where you can continue work on the exercises, with some support
from IT teachers. Other exercises are for you to try on your own, as a reminder or
an extension of the work done during the course.

Text Conventions

A number of conventions are used to help you to be clear about what you need to
do in each step of a task.

 In general, the word press indicates you need to press a key on the
keyboard. Click, choose or select refer to using the mouse and clicking
on items on the screen. If you have more than one mouse button, click
usually refers to the left button unless stated otherwise.

 Names of keys on the keyboard, for example the Enter (or Return) key are
shown like this ENTER.

 Multiple key names linked by a + (for example, CTRL+Z) indicate that the
first key should be held down while the remaining keys are pressed; all keys
can then be released together.

 Words and commands typed in by the user are shown like this.

 Labels and titles on the screen are shown l ike this .

 Drop-down menu options are indicated by the name of the options
separated by a vertical bar, for example File|Pr int . In this example you
need to select the option Print from the Fi le menu or tab. To do this, click
when the mouse pointer is on the File menu or tab name; move the pointer
to Print ; when Print is highlighted, click the mouse button again.

 A button to be clicked will look l ike this .

 The names of software packages are identified like this, and the names of
files to be used l ike this .

Data Management: Databases - MySQL Introduction for Researchers

 3 IT Learning Centre

Software Used

XAMPP

Files Used

Revision Information

Version Date Author Changes made

1.0 Sep 2013 Mohammad Yaqub Creation of the text

1.1 Mar 2014 Mohammad Yaqub Update some text and examples

1.2 May 2014 Mohammad Yaqub Further revision to text and exercises

1.3 Sep 2014 Mohammad Yaqub Major revision for the whole book

1.4 Mar 2015 Mohammad Yaqub Minor revision for some exercises

1.5 Jun 2015 Mohammad Yaqub Minor revision to the slides

1.6 Nov 2015 Mohammad Yaqub Minor revision to the slides

1.7 May 2016 Mohammad Yaqub Minor revision for some exercises

2.0 Nov 2015 Mohammad Yaqub Minor changes to make the book better
suited for researchers

2.1 Feb 2017 Mohammad Yaqub New ITLC style

2.2 Feb 2019 Mohammad Yaqub Minor review

2.3 Jun 2019 Mohammad Yaqub Changes of the path of XAMPP because
of new installation setup in the lab

2.4 Oct 2019 Mohammad Yaqub Changed Lynda.com to LinkedIn
Learning

2.5 May 2020 Mohammad Yaqub Changes to suit online teaching

Copyright

This document is made available under a Creative Commons Attribution-
NonCommercial-ShareAlike CC BY-NC-SA licence by Mohammad Yaqub who
asserts his right to be identified as the author.

Note that some images used in the document and presentations are copyright of
their owners and may be subject to different copyright conditions. Where possible
this has been noted in the text. If an error in attribution/copyright has been made,
please contact the author who will be pleased to make the necessary corrections.

Screenshots are copyright of the respective software suppliers.

Acknowledgement

Most of the syntax in this book was adopted from http://dev.mysql.com.

http://dev.mysql.com/

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 4

Contents

1 Introduction ... 6

1.1. What is a Database? .. 6

1.2. What is SQL? .. 7

1.3. MySQL... 7

2 Installation Guide to use MySQL .. 8

2.1. XAMPP .. 8

2.2. phpMyAdmin ... 8

2.3. How to Complete the Exercises ... 9

3 Setting up MySQL ... 11

3.1. Creating/Editing/Dropping SQL users .. 11

3.2. Creating/Dropping Databases .. 12

4 Creating Tables .. 14

4.1. Data Types .. 14

4.2. Primary Key .. 15

4.3. Linking Tables via Primary – Foreign Keys ...20

5 Manipulating Data in Tables ... 21

5.1. INSERT Statement ... 21

5.2. UPDATE Statement ... 22

5.3. DELETE Statement .. 23

6 Queries ... 25

6.1. SELECT Statement ... 25

6.2. Where Clause ... 26

6.3. Comparisons and Conditions .. 27

7 Advanced Queries .. 30

7.1. Sorting Data – ORDER BY Clause ... 30

7.2. Querying Multiple Tables .. 30

7.3. Pseudonyms for Table or Column Names .. 31

7.4. Subquery (inner SELECT) ... 32

7.5. The IN Operator ... 32

7.6. Basic String Comparison Functions .. 33

7.7. The BETWEEN Operator ... 34

8 Importing and Exporting .. 36

8.1. Migration from/to MySQL Database only .. 36

9 What is Next? ... 37

Attend the MySQL Further Techniques course ... 37

Explore phpMyAdmin... 37

Read a book or tutorials about MySQL or SQL in general ... 37

Data Management: Databases - MySQL Introduction for Researchers

 5 IT Learning Centre

Exercises

Exercise 1 Create MySQL users .. 12

Exercise 2 Create MySQL database ... 13

Exercise 3 Create MySQL table .. 16

Exercise 4 Create the other 3 MySQL tables using the import facility. 18

Exercise 5 Create Foreign Key constraints ..20

Exercise 6 Insert data to tables .. 22

Exercise 7 Update data in a table ... 23

Exercise 8 Delete data from a table ... 24

Exercise 9 Querying data from a table .. 26

Exercise 10 Querying specific records .. 27

Exercise 11 Querying data – using conditions .. 29

Exercise 12 Retrieving sorted records .. 30

Exercise 13 Querying multiple tables.. 31

Exercise 14 Querying multiple tables: use primary-foreign keys relationship 32

Exercise 15 Querying multiple tables: use primary-foreign keys relationship 32

Exercise 16 Querying multiple tables: use IN operator ... 33

Exercise 17 The use of LIKE and NOT LIKE .. 34

Exercise 18 The use of STRCMP() .. 34

Exercise 19 Querying data – BETWEEN operator ... 35

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 6

1 Introduction
The Structured Query Language (SQL) is the language of databases. SQL was, is,
and will stay for the foreseeable future the database language for relational
database servers such as IBM DB2, Microsoft SQL Server, MySQL, Oracle,
Progress, Sybase Adaptive Server, and dozens of others.

SQL supports a small but very powerful set of statements for manipulating,
managing, and protecting data stored in a database. This power has resulted in its
tremendous popularity. Almost every database server supports SQL or a dialect of
the language. Currently, SQL products are available for every kind of computer,
from a small handheld computer to a large server, and for every operating system,
including Microsoft Windows, Mac and many UNIX variations.

1.1. What is a Database?

A database is a structured collection of data that is used by the application systems
of some given enterprise, and that is managed by a database management system.

For the purpose of this course, think of a database as a collection of tables which
are connected to each other. IT Learning Centre (ITLC) in the University of Oxford
offers a course on how to design a database. This course is a pre-requisite to this
course. However, if you did not attend the database designing course, please read
the following paragraphs.

As we mentioned, a database is a collection of tables. Each table is similar to a
spreadsheet table in which each row is called a record and each column is called a
field. For example, if we need to create a table that contains students’ information,
we might have the following fields

Data can be entered to this table so you can get the following table

Although this table contains students’ information, it does not contain each
student’s grades. This is fine because the grades have to appear in a different table
to reduce data redundancy. This is called database normalisation. The grades
table might look like

Grade_ID St_ID Course_ID Grade_Value Comments

St_ID St_Name St_DateOfBirth St_Email

St_ID St_Name St_DateOfBirth St_Email
45215 John Smith 21/5/1995 jsmith@ox.ac.uk
45287 Alison Green 5/11/1994 agreen@ox.ac.uk
48652 Thomas Li 18/7/1998 tli@ox.ac.uk
51420 Susan Bailey 14/1/1991 sbailey@ox.ac.uk
52201 Will King 3/3/1997 wking@ox.ac.uk

mailto:jsmith@ox.ac.uk
mailto:agreen@ox.ac.uk
mailto:tli@ox.ac.uk
mailto:sbailey@ox.ac.uk
mailto:wking@ox.ac.uk

Data Management: Databases - MySQL Introduction for Researchers

 7 IT Learning Centre

Notice how the Grades table is linked to the Students table via St_ID which
appears in both tables. The field St_ID in the Students table is acting as the
primary key which is a unique id to identify each record in the table. The field
St_ID in the Grades table is called the foreign key and it links to a primary key in

a different table. You might have noticed that there is a field called Course_ID in
the Grades table which is another foreign key to identify a grade’s course. This
means that there must be another table that contains data for different courses.

Form the previous simple example you should now have an idea of what we mean
by a database. It is important to understand the following concepts: database,
table, record, field, primary key, foreign key and data normalisation. Next sections
will build on this and focus on SQL and how to use it to build a complete database
using MySQL.

1.2. What is SQL?

Structured Query Language (SQL) is a relational database language which allows
you to create, delete, access and manipulate databases. The following is a list of the
main operations that can be formulated with SQL:

 creating new databases

 deleting a database

 creating new tables in a database

 deleting tables from a database

 creating and removing users (database access control)

 executing queries against a database

o retrieving data from a database

o inserting records in a database

o updating records in a database

o deleting records from a database

 creating stored procedures in a database

 setting permissions on tables and procedures

 creating relationships between tables

1.3. MySQL

MySQL is a Relational Database Management System (“RDBMS”). It is used by
most modern websites and web-based services as a convenient and fast-access
storage and retrieval solution for large volumes of data. A simple example of items
which might be stored in a MySQL database would be a site-registered user’s name
with associated password (encrypted for security), the user registration date, and
number of times visited, etc.

MySQL can also be accessed using many tools. It can be easily communicated with
via PHP (PHP Hypertext Preprocessor), a scripting language whose primary focus
is to manipulate HTML for a webpage on the server before it is delivered to a
client’s machine. A user can submit queries to a database via PHP, allowing
insertion, retrieval and manipulation of information into/from the database.

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 8

2 Installation Guide to use MySQL
MySQL can be downloaded from http://dev.mysql.com/downloads/. There are
also several MySQL management tools which can be downloaded and installed to
allow the manipulation of MySQL. These tools mainly provide an interface to
operate on MySQL. Many of these tools are free and provide an easy configuration
of MySQL with PHP, e.g., XAMPP, WampServer, AMPPS . Another free MySQL
management system is MySQL workbench. It provides database administrators
and developers an integrated environment for database design and modelling, SQL
development, database administration, database migration. In this course we will
be using XAMPP because it is straightforward to install and use.

2.1. XAMPP

XAMPP is a freely available software package which integrates distributions for
Apache web server, MySQL, PHP and Perl into one easy installation. If you wish to
set up a web server on your home computer, this is the recommended route. We
will be using XAMPP for the purposes of this course. The teacher will guide through
the process of installing XAMPP in the class.

2.2. phpMyAdmin

Also included within XAMPP is phpMyAdmin, a web-based frontend (“graphical
interface”) for MySQL, allowing queries to be submitted via mouse clicks in a web
browser or by writing these queries in the SQL box inside phpMyAdmin. Figure 1
shows the main page of phpMyAdmin. In the figure you can see the main tabs
which are arranged horizontally at the top.

We will use phpMyAdmin to verify the results of completed examples during this
short-course. When directed to do the exercises in phpMyAdmin, you should open
your web browser and visit the following URL:

http://localhost/phpmyadmin

FYI, most web hosting companies provide a web hosting control panel called
cPanel. cPanel provides a graphical interface and automation tools to simplify web
hosting for customers. cPanel has phpMyAdmin integrated to its system. cPanel
has loads of features like website builders, easy transfer of websites, email setup,
remote access, etc. For more information see www.cpanel.net.

phpMyAdmin allows the user to write SQL command from the SQL tab. It also
provides a mechanism to import SQL command from a file. However, its interface
provides other ways to perform tasks using a graphical user interface (GUI). For
instance, you can write a command to create a table in your database. You can also
achieve this from phpMyAdmin GUI. This course focuses on how to write
command-line SQL but I encourage you to explore phpMyAdmin interface.

http://dev.mysql.com/downloads/
http://localhost/phpmyadmin
http://www.cpanel.net/

Data Management: Databases - MySQL Introduction for Researchers

 9 IT Learning Centre

Figure 1. phpMyAdmin main page.

2.3. How to Complete the Exercises

After Installing XAMPP, you are good to go. You need to open XAMPP control
panel (either open from the start menu or usually exists in C:/xampp/) and start
Apache and MySQL services. The database in the exercises which you are going to
practice today is the same database used in other database courses at the IT
Learning Centre. The database is for a surgery called St. Giles Surgery. This
database contains 4 tables to hold patients, doctors, receptionists and
appointments data. Figure 2 shows a schematic diagram of the database. The figure
also shows table names (tblPatient, tblDoctors, tblReceptionist and
tblAppointment) and field names (or columns) in each table. It also shows the data
type for each field (for more information, see section 4.1). The links in the figure
reflect the primary-foreign key relationships.

The first few exercises will show how to use phpMyAdmin to write an SQL
statement and how to use its GUI instead.

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 10

Figure 2. St. Giles Surgery database structure.

Data Management: Databases - MySQL Introduction for Researchers

 11 IT Learning Centre

3 Setting up MySQL
For the purpose of today’s course, you need to have XAMPP installed and running.
You then need to do administrative tasks like creating username and password,
granting or revoking permissions, creating a database, etc.

3.1. Creating/Editing/Dropping SQL users

It is important to control which users are allowed to connect to the MySQL server
and what permissions they are given on what databases. By default, MySQL (within
XAMPP) comes with a “root” admin user with no password. You should set a
password for the root user. You should also create and use a different user with
possibly limited permissions to what is needed by the user. For instance, it is not
wise to use the root user to connect to a MySQL database from a PHP code. It is
better if you connect to it using a different user. You can create MySQL users using
phpMyAdmin by clicking on the Users accounts tab then click on Add user

account . Enter user name, password and repeated password. You also need to
specify that the host is local for the purpose of this course. At the bottom of the
page you will find all the permissions which can be granted/revoked from a user.
After choosing the required credentials, click on the Go button. phpMyAdmin
allows you to drop or edit a user. You can find how to do these from the Users

accounts tab.

You can also add or delete a user using SQL. The syntax is:

CREATE USER user_specification [, user_specification] ...

DROP USER user_name [, user_name] ...

For instance, the following two statements add a local MySQL user “sqluser” with
a password “test”. The second statement drops the user.

CREATE USER 'sqluser'@'localhost' IDENTIFIED BY 'test';

DROP USER 'sqluser'@'localhost';

There are several other statements in MySQL which allows other user management
functionalities. For more information check GRANT, REVOKE, RENAME and SET

PASSWORD statements in http://dev.mysql.com/doc/#manual.

NOTE: In any syntax given in this book, we use [.] to refer to an optional part of a
statement. For example, in the statement above (Drop USER user_name [,
user_name]), the part [, user_name] is optional and it can be omitted. If
you include one of the optional clauses in a statement, do not type the [square
bracket] symbols.

http://wiki.phpmyadmin.net/pma/MySQL

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 12

Exercise 1 Create MySQL users

Suggested time to spend on this exercise is 7 minutes

NOTE: Make sure that XAMPP/MySQL is running to be able to complete any exercise.

Run XAMPP

After installing XAMPP, from the start menu, open
XAMPP control panel. Click star t MySQL from XAMPP

control panel. Also, click star t Apache from XAMPP
control panel.

Note that you can stop or configure MySQL from the
same control panel.

Start phpMyAdmin and familiarise
yourself with it

Open any browser (Chrome is preferred) then type the
following in the address bar

 Localhost/phpmyadmin

phpMyAdmin has many tabs. Please check these tabs to
become familiar with its interface.

Also, notice the tree view on the left hand side of
phpMyAdmin page. This view allows you to access
databases/tables faster.

Create a MySQL user using
phpMyAdmin interface

Click on the Users accounts tab, click on Add user

account . Enter user name (sqluser1), password
(test) and repeated password (test). From Host,
select Local.

In the “Global privileges” panel, Check al l the

permissions to create an admin user. Then click the Go
button.

Alternatively, you can create a user
by writing a SQL statement.

Click on the SQL tab. In the empty box type the
following

CREATE USER 'sqluser2'@'localhost'

IDENTIFIED BY 'test';

Click Go .

3.2. Creating/Dropping Databases

Using phpMyAdmin, you now need to create a new database. To do that, you need
to click on the Databases tab and enter a database name then click Create .
phpMyAdmin allows the user to delete a database from its interface as well.

Alternatively, you can write a SQL code to create/drop a database instead. The
syntax is:

Data Management: Databases - MySQL Introduction for Researchers

 13 IT Learning Centre

CREATE DATABASE [IF NOT EXISTS] db_name

DROP DATABASE [IF EXISTS] db_name

Note that to connect to a MySQL database from PHP you need to specify a
username, password and database name.

Exercise 2 Create MySQL database

Suggested time to spend on this exercise is 4 minutes

Create a database using
phpMyAdmin interface

From the main window of phpMyAdmin, click on the
Databases tab.

Enter a database name (sqlcourse).

Click Create .

Alternatively, you can create a
database using a SQL statement.

Click on the SQL tab. In the empty box type the
following

CREATE DATABASE IF NOT EXISTS sqlcourse;

Click Go .

Notes

 The statement in Task 2 will do nothing as you have already created a database with this
name.

 Notice on the left side of phpMyAdmin that the database name appeared.

 In fact, you can access databases from the left side view (tree view) of phpMyAdmin. You
can later access all created tables within each database.

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 14

4 Creating Tables
The CREATE TABLE statement is used to construct new tables, in which rows of data
can be stored. Its general syntax is

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name

 (col_name column_definition,...)

 [table_options]

 [partition_options]

The column_definition is the description of a column in the table. The general
format of the column definition is:

column_definition:

 data_type [NOT NULL | NULL] [DEFAULT default_value]

 [AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]

 [COMMENT 'string']

 [COLUMN_FORMAT {FIXED|DYNAMIC|DEFAULT}]

 [STORAGE {DISK|MEMORY|DEFAULT}]

 [reference_definition]

We will be discussing some of these options in the following examples. The most
important definition is the data_type which is described in Section 4.1.

4.1. Data Types

SQL usually supports a number of data types in several categories: numeric types,
date and time types, and string (character and byte) types. The most common ones
are:

 INTEGER[(length)] [UNSIGNED] [ZEROFILL]

 FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]

 DATE

 TIME

 CHAR[(length)] [CHARACTER SET charset_name] [COLLATE collation_name]

 BINARY[(length)]

 TEXT [BINARY]

 [CHARACTER SET charset_name] [COLLATE collation_name]

MySQL supports much more data types which are variations of the common data
types. Here is a list of these data types in MySQL:

 BIT[(length)]

 TINYINT[(length)] [UNSIGNED] [ZEROFILL]

 SMALLINT[(length)] [UNSIGNED] [ZEROFILL]

 MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]

Data Management: Databases - MySQL Introduction for Researchers

 15 IT Learning Centre

 INT[(length)] [UNSIGNED] [ZEROFILL]

 INTEGER[(length)] [UNSIGNED] [ZEROFILL]

 BIGINT[(length)] [UNSIGNED] [ZEROFILL]

 REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]

 DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]

 FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]

 DECIMAL[(length[,decimals])] [UNSIGNED] [ZEROFILL]

 NUMERIC[(length[,decimals])] [UNSIGNED] [ZEROFILL]

 DATE

 TIME

 TIMESTAMP

 DATETIME

 YEAR

 CHAR[(length)]

 [CHARACTER SET charset_name] [COLLATE collation_name]

 VARCHAR(length)

 [CHARACTER SET charset_name] [COLLATE collation_name]

 BINARY[(length)]

 VARBINARY(length)

 TINYBLOB

 BLOB

 MEDIUMBLOB

 LONGBLOB

 TINYTEXT [BINARY]

 [CHARACTER SET charset_name] [COLLATE collation_name]

 TEXT [BINARY]

 [CHARACTER SET charset_name] [COLLATE collation_name]

 MEDIUMTEXT [BINARY]

 [CHARACTER SET charset_name] [COLLATE collation_name]

 LONGTEXT [BINARY]

 [CHARACTER SET charset_name] [COLLATE collation_name]

 ENUM(value1,value2,value3,...)

 [CHARACTER SET charset_name] [COLLATE collation_name]

 SET(value1,value2,value3,...)

 [CHARACTER SET charset_name] [COLLATE collation_name]

4.2. Primary Key

The PRIMARY KEY constraint uniquely identifies each record in a database table.
It is important to distinguish records in a table. For instance, student ID is used as
a unique key for each student in a school. Primary key values must be unique and
cannot be NULL.

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 16

Exercise 3 Create MySQL table

Suggested time to spend on this exercise is 10 minutes

Create tblDoctors
table

Click on the sqlcourse database. You can find it on left side panel that
contains all databases. This step is important in every exercise. Without
clicking on the database the next step won’t work.

Alternatively, you can write the following statement instead of clicking
on the database to tell SQL that you want to use a specific database.

 USE sqlcourse;

Click on the SQL tab. In the empty box type the following

CREATE TABLE tblDoctors (

 DoctorID int(11) NOT NULL AUTO_INCREMENT,

 Title varchar(25) DEFAULT 'Dr',

 FirstName varchar(20) DEFAULT NULL,

 LastName varchar(30) DEFAULT NULL,

 Address1 varchar(50) DEFAULT NULL,

 Address2 varchar(50) DEFAULT NULL,

 Address3 varchar(40) DEFAULT NULL,

 County varchar(20) DEFAULT NULL,

 PostCode varchar(10) DEFAULT NULL,

 HomePhone varchar(15) DEFAULT NULL,

 EmployedNow tinyint(1) DEFAULT 0,

 PRIMARY KEY (DoctorID),

 KEY DoctorID (DoctorID),

 KEY PostCode (PostCode)

)ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

Click Go .

Correct any coding errors that become evident.

Data Management: Databases - MySQL Introduction for Researchers

 17 IT Learning Centre

Explanation:

The above statement creates a table called tblDoctors with several fields. Please note the following:

 DEFAULT is used to give a default value for the field when entering a new record.

 NULL means that the field can be empty. NOT NULL means the opposite.

 PRIMARY KEY is used to specify the field name which is to be used as a primary key.

 KEY is normally a synonym for INDEX. This is usually used to identify fields in a table which can
be linked to primary keys in other tables. Check Exercise 5.

 ENGINE=InnoDB: specifies the MySQL database engine as there are several MySQL engines. It is
out of the scope of this course to describe these engines.

 AUTO_INCREMENT: specifies which field is an auto-generated number.

 AUTO_INCREMENT=1: the first number to start with.

 CHARSET is a synonym for CHARACTER SET. MySQL allows storing data using a variety of
character sets and to perform comparisons according to a variety of collations. For more
information search for “MySQL charset”.

 Not shown in this example – UNIQUE: creates a constraint such that all values in the field must
be distinct. However, in most MySQL engines, unique fields can be null. This makes it different
from a primary key.

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 18

Exercise 4 Create the other 3 MySQL tables using the import facility.

So we have the SQL statements already written in a text file called tables.sql.
We will import the ready-made SQL statements to create the remaining 3
tables for the purpose of today’s course. We are doing this way because I don’t
want you to keep on typing these statements since we have a limited time to
finish the course. So we will practice the import functionality in phpMyAdmin
which allows importing SQL statements written on a file. For more information
check Chapter 8.

Suggested time to spend on this exercise is 5 minutes

Import an existing SQL file
to MySQL database.

Make sure you are within the sqlcourse database.

NOTE: To edit the file before importing it to MySQL, you can open
it using Notepad or any similar text editor. Please let me know if
you have any problem.

Click on the Import tab and click on the Choose Fi le button.

Locate the file tables.sql and click Open .

Click the Go button.

Note: If you are interested to write the SQL statements instead of importing them, the tables.sql

file contains the following CREATE statements. In addition, you should be able to see the
created tables in phpMyAdmin.

Data Management: Databases - MySQL Introduction for Researchers

 19 IT Learning Centre

First table tblReceptionist. By the way, this is a comment in MySQL.

CREATE TABLE tblReceptionist (

 ReceptionistID int(11) NOT NULL AUTO_INCREMENT,

 Title varchar(10) DEFAULT 'Mrs',

 FirstName varchar(20) DEFAULT NULL,

 LastName varchar(30) DEFAULT NULL,

 Address1 varchar(50) DEFAULT NULL,

 Address2 varchar(50) DEFAULT NULL,

 Address3 varchar(40) DEFAULT NULL,

 County varchar(20) DEFAULT 'Oxfordshire',

 PostCode varchar(10) DEFAULT NULL,

 HomePhone varchar(15) DEFAULT NULL,

 Salary decimal(19,4) DEFAULT '0.0000',

 PRIMARY KEY (ReceptionistID),

 KEY ReceptionistID (ReceptionistID),

 KEY PostCode (PostCode)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1;

Second table tblPatient

CREATE TABLE tblPatient (

 PatientID int(11) NOT NULL AUTO_INCREMENT,

 Title varchar(15) DEFAULT NULL,

 FirstName varchar(20) DEFAULT NULL,

 Lastname varchar(30) NOT NULL,

 Gender varchar(50) DEFAULT 'Female',

 DOB datetime DEFAULT NULL,

 Address1 varchar(30) DEFAULT NULL,

 Address2 varchar(30) DEFAULT NULL,

 Address3 varchar(30) DEFAULT NULL,

 County varchar(30) DEFAULT 'Oxfordshire',

 PostCode varchar(15) NOT NULL,

 HomePhoneNum varchar(15) DEFAULT NULL,

 WorkContactNum varchar(15) DEFAULT NULL,

 Attending School tinyint(1) DEFAULT '0',

 SchoolID int(11) DEFAULT NULL,

 PRIMARY KEY (PatientID),

 KEY HomePhoneNum (HomePhoneNum),

 KEY Lastname (Lastname,FirstName),

 KEY PostCode (PostCode),

 KEY SchoolID (SchoolID),

 KEY WorkContactNum (WorkContactNum)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

Third table tblAppointment

CREATE TABLE tblAppointment (

 AppointmentID int(11) NOT NULL AUTO_INCREMENT,

 PatientID int(11) NOT NULL,

 DoctorID int(11) NOT NULL,

 ReceptionistID int(11) NOT NULL,

 TimeAndDatetaken datetime NOT NULL,

 AppointmentDate date DEFAULT NULL,

 AppointmentTime time DEFAULT NULL,

 AppointmentKept tinyint(1) DEFAULT '0',

 PRIMARY KEY (AppointmentID),

 KEY DoctorID (DoctorID),

 KEY AppointmentID (AppointmentID),

 KEY PatientID (PatientID),

 KEY ReceptionistID (ReceptionistID)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1;

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 20

4.3. Linking Tables via Primary – Foreign Keys

A FOREIGN KEY is a field in one table that points to a PRIMARY KEY in another
table. This constraint is important to link tables together. For instance,
PatientID field in the tblAppointment table is foreign key for the primary key

PatientID in the tblPatient table.

There are different ways to specify a foreign key. As we have already created our
tables, we can alter them to add the foreign key constraints. The syntax is:

ALTER TABLE table_name ADD [CONSTRAINT [symbol]] FOREIGN KEY (column_name)

REFERENCES the_other_table_name (column_name) [ON DELETE CASCADE] [ON

UPDATE CASCADE]

Exercise 5 Create Foreign Key constraints

This exercise allows you to create a constraint to a table by creating a primary
– foreign key constraint.

Suggested time to spend on this exercise is 5 minutes

Add foreign key constraints

Click on the SQL tab, type the following statement and then

click Go :

Note: you can find this statement written in the const.sql
file so you can import it instead but it is important to
understand the syntax.

ALTER TABLE tblAppointment

 ADD CONSTRAINT FOREIGN KEY (DoctorID) REFERENCES tblDoctors (DoctorID)

ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT FOREIGN KEY (PatientID) REFERENCES tblPatient (PatientID)

ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT FOREIGN KEY (ReceptionistID) REFERENCES tblReceptionist

(ReceptionistID) ON DELETE CASCADE ON UPDATE CASCADE;

Explanation:

 This is one big statement which adds three constraints to the table tblAppointment.

 CASCADE: on deleting or updating a row from a parent table (e.g., tblPatient), automatically
deletes or updates the matching rows in the child table (e.g., tblAppointment).

PatientID is a primary
key in tblPatient

PatientID is a foreign
key in tblAppointment

Data Management: Databases - MySQL Introduction for Researchers

 21 IT Learning Centre

5 Manipulating Data in Tables
Once we got the tables set up with fields and links, we need to enter some data in.
Data can be inserted directly using SQL statements or imported from a pre-written
file. Remember that data from different formats can be imported, e.g., CSV (e.g.,
search for “Import CSV to MySQL”). In this section, we will be focusing on
manipulating data in tables by writing SQL statements.

5.1. INSERT Statement

In SQL, you can use the INSERT statement to add rows of data to an existing table.
With this statement, you can add new rows or populate a table with rows taken
from another table.

The basic syntax is:

INSERT INTO tbl_name (col_name1, col_name2 ...) VALUES (val1, val2 …)

The general syntax of the INSERT statement which contains more options is:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name

 [PARTITION (partition_name,...)]

 [(col_name,...)]

 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...

 [ON DUPLICATE KEY UPDATE

 col_name=expr

 [, col_name=expr] ...]

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 22

Exercise 6 Insert data to tables

Suggested time to spend on this exercise is 7 minutes

Insert one row to the tblDoctors
table

Click on the SQL tab. In the empty box type the

following and then click Go :

INSERT INTO tblDoctors (DoctorID, Title, FirstName, LastName, Address1,

Address2, Address3, County, PostCode, HomePhone, EmployedNow) VALUES

(1, 'Dr', 'Joe', 'Blowphelt', '12, Hill St', 'Witney', NULL,

'Oxfordshire', 'OX3 5EW', '34432432', 1);

Import the remaining data to tables

Open the file Data.sql using any text editor e.g.,
Notepad. Spend some time reading the SQL INSERT
statements in the file.

Import the file Data.sql to the sqlcourse database (user
the same steps as in Exercise 4).

Check data in phpMyAdmin

From the left panel of phpMyAdmin, click on the
sqlcourse database. You should be able to see the 4 tables.
Explore the fields and records in each table.

Click on the Browse tab to see the data.

Click on the Structure tab to show information about
each field in a table.

5.2. UPDATE Statement

The easiest way to update a value in a table is by viewing the content of a table via
phpMyAdmin then editing a field to change a specific value. This works well if one
cell is to be edited. If many values are needed to get changed then this becomes
tedious. The solution to this is to use the UPDATE statement.

With the UPDATE statement, you can change one or more values in one or more
tables. To achieve this, use the table(s) name to indicate which table needs to be
updated and field(s) name to specify which column(s) within the table(s) to update.
The WHERE clause of an UPDATE statement specifies which rows must be changed
(see Section 6.2); the SET clause assigns new values to one or more columns. The
basic and common syntax is

UPDATE table_reference SET col_name1={expr1|DEFAULT} [,

col_name2={expr2|DEFAULT}] ...

[WHERE where_condition]

The more detailed syntax is:

Data Management: Databases - MySQL Introduction for Researchers

 23 IT Learning Centre

UPDATE [LOW_PRIORITY] [IGNORE] table_reference

 SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...

 [WHERE where_condition]

 [ORDER BY ...]

 [LIMIT row_count]

Exercise 7 Update data in a table

Suggested time to spend on this exercise is 4 minutes

Update the salary of a receptionist

In the tblReceptionist table, check Sarah Peters salary.
It should be 9875.

You need to change the salary of the receptionist Sarah
Peters to 10000.

To update the salary, write the following SQL statement
and click Go :

UPDATE tblReceptionist SET Salary=10000 WHERE LastName='Peters'

Check if the salary has changed from the tblReceptionist table.

NOTE:

 The WHERE statement is covered in Section 6.2. It is used to specify a subset of records in a
table.

 You can view and update the data using phpMyAdmin interface. However, this can be
achieved on one row at a time. SQL statements allow you to update multiple rows in one
command.

Optional questions (discuss the answers with the teacher if you want):

 What if you have two or more receptionists of last name Peters? Using the previous update
statement, what will happen?

 What happens if we drop the WHERE part from the update statement?

5.3. DELETE Statement

The DELETE statement removes rows from a table. A basic syntax for the DELETE
statement is:

DELETE FROM tbl_name [WHERE where_condition]

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 24

A more complete syntax with more options:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name

 [WHERE where_condition]

 [ORDER BY ...]

 [LIMIT row_count]

Exercise 8 Delete data from a table

Suggested time to spend on this exercise is 5 minutes

Before we delete anything, let’s
insert a new receptionist to the
tblReceptionist

Insert a receptionist. Table tblReceptionist have
several fields. You just need to insert a few fields. The
following are the only fields to enter (keep the remaining
fields empty):

ReceptionistID: 6

FirstName: Sam

LastName: Lee

Refer to Exercise 6 for more information on how to insert
data.

Check to see if data was entered correctly.

Delete the record for the recently
entered receptionist

Write the following

DELETE FROM tblReceptionist WHERE

ReceptionistID=6

Check whether data was deleted.

Data Management: Databases - MySQL Introduction for Researchers

 25 IT Learning Centre

6 Queries

6.1. SELECT Statement

The SELECT statement is used to query data from tables. The retrieved rows are
selected from one or more table. Such a result table can be used as the basis of a
report, for example.

The basic syntax of the SELECT statement is:

SELECT select_expr [, select_expr ...] FROM table_name

Each select_expr indicates a column that you want to retrieve. * is used instead
of select_expr as a wildcard if you want to retrieve all columns from a table.

The complete syntax of the SELECT statement is:

SELECT

 [ALL | DISTINCT | DISTINCTROW]

 [HIGH_PRIORITY]

 [STRAIGHT_JOIN]

 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]

 [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]

 select_expr [, select_expr ...]

 [FROM table_name

 [WHERE where_condition]

 [GROUP BY {col_name | expr | position}

 [ASC | DESC], ... [WITH ROLLUP]]

 [HAVING where_condition]

 [ORDER BY {col_name | expr | position}

 [ASC | DESC], ...]

 [LIMIT {[offset,] row_count | row_count OFFSET offset}]

 [PROCEDURE procedure_name(argument_list)]

 [INTO OUTFILE 'file_name' export_options

 | INTO DUMPFILE 'file_name'

 | INTO var_name [, var_name]]

 [FOR UPDATE | LOCK IN SHARE MODE]]

In general, clauses used must be given in exactly the order shown in the syntax
description. For example, a HAVING clause must come after any GROUP BY clause

and before any ORDER BY clause.

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 26

Exercise 9 Querying data from a table

Suggested time to spend on this exercise is 4 minutes

Retrieve all doctors’ information

This requires writing a SELECT statement to retrieve all
columns from the tblDoctors table. To do that write the
following statement in the SQL box and click Go .

 SELECT * FROM tblDoctors

Retrieve all receptionists’ first and
last names

Note that there is a link called Show query box
usually at the top of the page which you click to keep
the recent query you wrote. Click on it and write the
following

 SELECT FirstName, LastName FROM tblReceptionist

 [Optional]

You might want to practice other queries yourself. For example, write a query to retrieve
all patients first and last names.

Note:

When you write a query in the SQL box in phpMyAdmin and run it, you can see the total
number of retrieved records on the top of the page. A text in a green box should read for
example “Showing rows 0 - 29 (86 total, Query took 0.0010 sec)”. In this example the query
returned 86 records, the first 30 (0-29) are displayed. You can show all records if you click
on the Show al l button or you can use the arrows next to the Show al l button to browse
the remaining records. The time needed to execute the query is also displayed here, e.g.,
0.0010 sec in this example.

6.2. Where Clause

In the WHERE clause, a condition is used to select rows from a table. These selected
rows form the intermediate result of the WHERE clause. The WHERE clause acts as a
kind of filter.

Its syntax is

SELECT select_expr [, select_expr ...] FROM table [WHERE where_condition]

Data Management: Databases - MySQL Introduction for Researchers

 27 IT Learning Centre

Exercise 10 Querying specific records

Suggested time to spend on this exercise is 5 minutes

Retrieve the names of all the female
patients

To do that write the following statement in the SQL box
and click Go .

SELECT Title, FirstName, LastName FROM tblPatient WHERE Gender='Female'

 [Optional tasks]

You might want to practice other queries yourself. For example,

- write a query to retrieve all receptionists who live in Summertown.

- write a query to retrieve receptionist details whose salary equals £9400.

- write a query to retrieve appointments made on '2013-07-02'

Note:

When comparing two values (e.g., Gender='Female' in the previous example), we used
two single quotations around the work Female because it is text. Remember that text and
dates have to appear between two single quotes. Numbers do not need to appear between
quotes.

6.3. Comparisons and Conditions

We set conditions within the WHERE clause. The condition could be an expression,

for example, 83 or 15 * 100 as already discussed. Alternatively, it could be a
comparison or relation operator with another value, for example <83 or >=100).

Its syntax is

WHERE column_name operator expression_value

The value of the “column_name” is compared with the value of the expression. The
result will be true, false, or unknown. SQL supports the comparison operators
shown in Table 1. Multiple conditions can be combined using the logical operators
shown in Table 2. For example we can write the following as a condition:

WHERE column_name1 operator value1 AND column_name2 operator value2

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 28

Table 1. Comparison operators

Comparison Operator Meaning

= Equal to (as in Exercise 10)

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<> Not equal to

Table 2. Logical operators

Name Description

AND, && Logical AND

NOT, ! Negates value

||, OR Logical OR

XOR Logical XOR

Date and time comparisons. Please note that to compare date or time, you need to
specify the date or time in two single quotes as you do for strings. Use the same
format as specified in the database. For instance, if the date is saved in a database
in YYYY-DD-MM format (which represents 4 digits year – two digits day – two
digits month), then you need to compare this date using the same format, as for
example:

WHERE column_name operator '1995-25-07'

http://dev.mysql.com/doc/refman/5.0/en/logical-operators.html#operator_and
http://dev.mysql.com/doc/refman/5.0/en/logical-operators.html#operator_not
http://dev.mysql.com/doc/refman/5.0/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/5.0/en/logical-operators.html#operator_xor

Data Management: Databases - MySQL Introduction for Researchers

 29 IT Learning Centre

Exercise 11 Querying data – using conditions

Suggested time to spend on this exercise is 7 minutes

Retrieve the names, phones and
salaries of receptionists whose
salary is more than 10000

To do that write the following statement in the SQL box
and click Go .

SELECT FirstName, LastName, HomePhone, Salary FROM tblReceptionist WHERE

Salary>10000

Retrieve all male patients who live
in Oxford

Write the following and click Go

 SELECT * FROM tblPatient WHERE Gender='Male' AND Address3='Oxford'

 [Optional]

You might want to practice other queries yourself. For example:

- change the greater than sign in Task 1 to greater than or equal.

- write a query to retrieve all PatientIDs who were born after 1/1/1988.

- retrieve receptionists who get salary between 9000 and 12000.

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 30

7 Advanced Queries

7.1. Sorting Data – ORDER BY Clause

To sort the result of a query, MySQL uses an ORDER BY clause. The syntax for the
ORDER BY clause within a SELECT statement is as follows:

 [ORDER BY {col_name | position} [ASC | DESC]

The default is ascending order; this can also be specified explicitly using
the ASC keyword. To sort in a reverse order, add the DESC (descending) keyword
after the name of the column in the ORDER BY clause.

Exercise 12 Retrieving sorted records

Suggested time to spend on this exercise is 5 minutes

Retrieve all appointments sorted by
appointment date. Try ascending
order first then change it to
descending order.

To do that write one of the following statements in the
SQL box and click Go .

The first two statements are the same and they sort the
data in ascending order while the third statement sorts
the data in descending order.

SELECT * FROM tblAppointment ORDER BY AppointmentDate

SELECT * FROM tblAppointment ORDER BY AppointmentDate ASC

SELECT * FROM tblAppointment ORDER BY AppointmentDate DESC

Retrieve all appointments taken
after 1/7/2013 and sorted by
appointment date in descending
order.

Write the following

SELECT * FROM tblAppointment WHERE TimeAndDatetaken>'2013-07-01' ORDER

BY AppointmentDate DESC

7.2. Querying Multiple Tables

You can query different columns from multiple tables. There are different ways to
do this. However, one has to be careful when retrieving data from multiple tables
as unwanted records might be retrieved. The straightforward way to retrieve rows
from multiple tables is by query two or more tables in one SELECT statement. For
instance, you can get all records from two tables a follows

SELECT * FROM tbl_name_1, tbl_name_2 [WHERE where_condition]

Data Management: Databases - MySQL Introduction for Researchers

 31 IT Learning Centre

7.3. Pseudonyms for Table or Column Names

When multiple table specifications appear in the FROM clause, it is sometimes easier
to use so-called pseudonyms. Another name for pseudonym is an alias.
Pseudonyms are temporary alternative names for table names. This helps
distinguish between fields in multiple tables. Pseudonyms can also be used to give
an alias name for a column (field). The syntax is:

SELECT alias1.*, alias2.fieldX FROM tbl_name_1 AS alias1, tbl_name_2 AS alias2

[WHERE where_condition]

If a field name exists in two tables with the same name, we can use a pseudonym
to distinguish between the two fields. For instance, if table1 and table2 both have
a field called fieldX, we can write the following to retrieve fieldX from table1

SELECT t1.fieldX FROM table1 AS t1, table2 AS t2 WHERE t1.fieldX = t2.fieldX

Exercise 13 Querying multiple tables

Suggested time to spend on this exercise is 7 minutes

Retrieve receptionist names and
appointment dates from the
receptionist and appointment
tables, labelling the tables as “r” and
“app” respectively.

To do that write the following statement in the SQL box
and click Go .

How many records have been retrieved?

SELECT r.FirstName, r.LastName, app.AppointmentDate FROM tblReceptionist

AS r, tblAppointment as app

Add the doctor last name to the
query in the previous task

Write the following. Please notice the difference between
the two queries.

SELECT r.FirstName, r.LastName, d.LastName, app.AppointmentDate FROM

tblReceptionist AS r, tblAppointment as app, tblDoctors AS d

Question: How many records have been returned in Task 1 and Task 2? Why?

Note: You might have noticed that the total number of rows retrieved using the query in
Task 1 is number of records in tblReceptionist multiplied by the number of records
in tblAppointment.

What do you think about the number of records in Task 2?

Apparently, what happened is that each record from the first table was repeated with each
record in the second table. This is called Cartesian product. In fact, we did not want this to
happen. To avoid this we need to utilise the primary-foreign keys relationship. Check out
the next exercise.

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 32

Exercise 14 Querying multiple tables: use primary-foreign keys relationship

Suggested time to spend on this exercise is 4 minutes

Retrieve the receptionist names and
date of the appointments they made

To do that write the following statement in the SQL box
and click Go .

SELECT r.FirstName, r.LastName, app.AppointmentDate FROM tblReceptionist

AS r, tblAppointment as app WHERE app.ReceptionistID = r.ReceptionistID

7.4. Subquery (inner SELECT)

A subquery is a SELECT statement within another statement. In other words, a
table expression can be called from within another table expression. The called
table expression is a subquery. The syntax for it is

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2 [WHERE …])

Exercise 15 Querying multiple tables: use primary-foreign keys relationship

Suggested time to spend on this exercise is 5 minutes

Retrieve appointments created by
receptionist Mrs Burns

To do that write the following statement in the SQL box
and click Go .

SELECT * FROM tblAppointment WHERE ReceptionistID = (SELECT

ReceptionistID from tblReceptionist WHERE LastName = 'Burns')

 [Optional Task]

Retrieve all appointment dates for Dr Down.

Since we used an equal sign for the inner subquery so far, this means that the inner
query should only return one record. If the inner subquery returns more than one
record, MySQL will issue an error message saying so. However, sometimes we do
not know if the inner subquery will return more than one record or even no records.
To avoid this situation, check the next section (IN operator).

7.5. The IN Operator

The use of the IN operator in a SELECT statement makes multiple comparisons
easier. The condition with the IN operator has two forms. The first form is when
comparing a field with a list of values separated by commas. For instance, if you
use the equal sign to compare a column to multiple values, it gives a long statement
as follows:

SELECT * FROM t1 WHERE column1 = ‘value1’ OR column1 = ‘value2’ OR

 column1 = ‘value3’ …

http://dev.mysql.com/doc/refman/5.0/en/select.html

Data Management: Databases - MySQL Introduction for Researchers

 33 IT Learning Centre

Instead, use the IN operator to make the SELECT statement shorter and easier to
read:

SELECT * FROM t1 WHERE column1 IN (‘value1’,‘value2’,‘value3’ …)

The second form is to use the IN operator with a subquery. This happens when a
value of a field from a one table is to match one or more from another table. Try
the following exercise.

Exercise 16 Querying multiple tables: use IN operator

Suggested time to spend on this exercise is 7 minutes

Retrieve appointments created by
receptionists who get salary greater
than 10000.

Try the following SQL statement.

SELECT * FROM tblAppointment WHERE ReceptionistID = (SELECT

ReceptionistID from tblReceptionist WHERE Salary >10000)

Change the = sign in the previous statement to the IN
operator.

Why do you think we needed the IN operator here
instead of the equal sign?

 [Optional Task]

Retrieve patient records that have
appointments with Dr Down.

Try the following SQL then change the first = sign to the
IN and then change the second = sign to IN.

Discuss this with the teacher if you have any question.

SELECT * FROM tblPatient WHERE PatientID = (SELECT PatientID FROM

tblAppointment WHERE DoctorID = (SELECT DoctorID FROM tblDoctors WHERE

LastName='Down'))

Note

You might have noticed that you only needed to change the first equal sign in the last query
to get correct result. Why?

Also, try to change LastName='Down' to County='Oxfordshire'. Do you need to

change the second equal sign to IN this time?

7.6. Basic String Comparison Functions

MySQL has functions for comparing strings of text (alphanumeric values). The
basic ones are LIKE, NOT LIKE and STRCMP(). The LIKE operator is used to select

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 34

alphanumeric values with a particular pattern or mask. NOT LIKE is the negation of
LIKE.

MySQL provides standard SQL pattern matching as well as a form of pattern
matching based on extended regular expressions similar to those used by Unix
utilities. You to use ‘_’ to match any single character and ‘%’ to match an arbitrary
number of characters (including zero characters).

STRCMP() is used to compare two strings. It returns 0 if both strings are the same,
it returns -1 when the first string is smaller than the second according to the defined
order and 1 when second string is smaller the first one.

The standard syntax for these operators is:

Str1 LIKE Str2

Str1 NOT LIKE Str2

STRCMP (expr1, expr2)

Exercise 17 The use of LIKE and NOT LIKE

Suggested time to spend on this exercise is 5 minutes

Retrieve any receptionist(s) who
live in OX4 postcode area

To do that write the following statement in the SQL box
and click Go .

SELECT * FROM tblReceptionist WHERE PostCode LIKE 'OX4%'

 [Optional Tasks]

- Try to retrieve the receptionist(s) who do not live in OX4 postcode area.

- Find all patients that have last name ending with the letter 's'

- Find all patients that have first name of 4 characters length only. Hint: use the underscore
matching pattern.

Exercise 18 The use of STRCMP()

Suggested time to spend on this exercise is 3 minutes

Retrieve all patients whose last
name starts with a letter from the
range P – Z, arranged by last name
in ascending order.

To do that write the following statement in the SQL box
and click Go .

SELECT * FROM tblPatient WHERE STRCMP(LastName,'P')=1 ORDER BY LastName

7.7. The BETWEEN Operator

SQL supports a special operator that determines whether a value occurs within a
given range of values. Its basic syntax is

Data Management: Databases - MySQL Introduction for Researchers

 35 IT Learning Centre

WHERE column_name BETWEEN value1 AND value2

Exercise 19 Querying data – BETWEEN operator

Suggested time to spend on this exercise is 5 minutes

Retrieve all receptionists who get
salary between 9000 and 12000.

To do that write the following statement in the SQL box
and click Go .

SELECT * FROM tblReceptionist WHERE Salary BETWEEN 9000 AND 12000

Optional Tasks

 Retrieve all appointments between 2/7/2013 and 4/7/2013

 Retrieve all appointments for Dr Blowphelt between 2/7/2013 and 4/7/2013 sorted
by appointment date

Data Management: Databases - MySQL Introduction for Researchers

IT Learning Centre 36

8 Importing and Exporting
MySQL allows creating a dump file from a database, or restoring data from a file
to a live database. This process allows importing and exporting database structures
(e.g., tables) and data (e.g., the content of tables). It is possible to move information
between different MySQL databases or even between MySQL and different SQL
databases like MS Access, Oracle, SQL Server, etc.

8.1. Migration from/to MySQL Database only

MySQL allows the user to export a database and dump it as a “.sql” file which
contains all the SQL statements needed to create the database structure and all the
SQL statements needed to insert data into these tables. The export also generates
other necessary statements which for instance are used to create a database, users,
etc.

To export a database from phpMyAdmin, click on the Expor t tab. Several file
formats can be used during export. The SQL file format is the most common one
to use when exporting data from one place to another. Notice that phpMyAdmin
allows the user to customise the exportation to their needs. For instance, it is
possible to export one table instead of the whole database. Also, notice that
phpMyAdmin allows exporting data in several file formats including SQL, CSV,
PDF, etc.

Importing databases to MySQL is also possible. To do that in phpMyAdmin, use
the Import tab. phpMyAdmin allows several file format for importing data to
MySQL. Again, “.sql” is the common one. Finally, other MySQL administration
tools like workbench have similar way to export or import databases to MySQL.

Data Management: Databases - MySQL Introduction for Researchers

 37 IT Learning Centre

9 What is Next?

Now that you have completed this short-course, it is hoped you have a better grasp of the

fundamental principles of MySQL. So what should you do next?

Attend the MySQL Further Techniques course

ITLC offer another course on MySQL which contains more advanced concepts. For more

information ask the teacher or course administrator.

Explore phpMyAdmin

phpMyAdmin contains much more things than what we covered in this book. For instance,

have a look on Triggers, Designer, Events, etc. For more information about it please visit

http://docs.phpmyadmin.net/en/latest/

http://www.siteground.com/tutorials/phpmyadmin/

Read a book or tutorials about MySQL or SQL in general

A detailed illustration about MySQL can be found on:

http://dev.mysql.com/doc/

http://www.tutorialspoint.com/mysql/

http://www.w3schools.com/SQL/

There are many other websites that has nice tutorial about MySQL. Just Google it.

Thank you for attending this short-course, and Good Luck!

http://docs.phpmyadmin.net/en/latest/
http://www.siteground.com/tutorials/phpmyadmin/
http://dev.mysql.com/doc/
http://www.tutorialspoint.com/mysql/
http://www.w3schools.com/SQL/

Data Management: Databases - MySQL
Introduction for Researchers

Mohammad Yaqub

mohammad.yaqub@it.ox.ac.uk

Ready To Learn?

• Today’s session takes place in a video-call using
Teams

• Can you see and hear the teacher?

• Please tell us if anything doesn’t work

• Don’t plan to multi-task

2

You will have: Class notes

Schedule

09:30 – 10:10 Teaching

10:30 – 11:30 Practice session

13:00 – 13:30 Teaching

14:00 – 14:50 Practice session

Today's arrangements

3

Today’s resources

• How will you display your workbook?

• Where are your course files?

• Is the software installed?

4

• MySQL is free

• It can be installed from different sources

• Recommended sources
• XAMPP, WAMP, MAMP, AMPPS, etc : PHP + MySQL
• MySQL workbench

• In XAMPP, phpMyAdmin is used as an interface
to control MySQL. Command line can be used
as well.

• phpMyAdmin: a web-based frontend interface
for MySQL.

Do at home - MySQL Installation

5

• Download XAMPP
https://www.apachefriends.org/download.html

Choose the first version of XAMPP according to
the operating system you are using

• Install XAMPP: usually installed in
• Windows: c:/xampp

• Mac: Applications

Do at home - MySQL Installation

6

• Open XAMPP control panel (from
XAMPP top directory or the start
menu in Windows)

• From XAMPP control panel, start
Apache and MySQL services

https://www.apachefriends.org/download.html

• Open any browser (preferably Chrome or Firefox) and type the
following as is (don’t select if Chrome makes a suggestion for instance)

localhost/phpmyadmin

• You should see a page like this

7

Do at home - MySQL Installation and
testing

What is a Database?

• Collection of data
▪ Organised

▪ Easily accessible

▪ Tables
▪ Rows (Records)

▪ Columns (Fields)

▪ Relationships between tables

8

• Consider the following table for Students

Simple database example

9

St_ID St_Name St_DateOfBirth St_Email

45215 John Smith 21/5/1995 jsmith@ox.ac.uk

45287 Alison Green 5/11/1994 agreen@ox.ac.uk

48652 Thomas Li 18/7/1998 tli@ox.ac.uk

51420 Susan Bailey 14/1/1991 sbailey@ox.ac.uk

52201 Will King 3/3/1997 wking@ox.ac.uk

Grade_ID St_ID Course_ID Grade_Value Comments

3 45215 8 68 …

6 45215 15 76

Primary –foreign key relationship

mailto:jsmith@ox.ac.uk
mailto:agreen@ox.ac.uk
mailto:tli@ox.ac.uk
mailto:sbailey@ox.ac.uk
mailto:wking@ox.ac.uk

• Structured Query Language (SQL) is a relational
database language which allows you to create,
delete, access and manipulate databases.

• MySQL is a Relational Database Management
System (“RDBMS”).

• MySQL is used by most modern websites and
web-based services as a convenient and fast-
access storage and retrieval solution for large
volumes of data.

What is SQL? MySQL?

10

• creating new databases

• deleting a database

• creating new tables in a database

• deleting tables from a database

• creating and removing users (database access
control)

• executing queries against a database

• creating stored procedures in a database

• setting permissions on tables and procedures

• creating relationships between tables

• etc…

What can SQL do?

11

How to complete the exercises

12Check Figure 2 (Page 10)

• Add SQL user
CREATE USER user_specification [,user_specification]

• Example
CREATE USER 'sqluser'@'localhost' IDENTIFIED BY
'test';

• Drop SQL user
DROP USER user_name [, user_name]

• Example
DROP USER 'sqluser'@'localhost';

• NOTE: […] is used to represent an option part within a statement

Setting MySQL users

13

• Create a database

CREATE DATABASE db_name

• Example

CREATE DATABASE 'sqlcourse';

• Drop a database

DROP DATABASE db_name;

• Example

DROP DATABASE 'sqlcourse';

Setting MySQL databases

14

Creating Tables

15

• Syntax
CREATE TABLE tbl_name (col_name column_definition,...)

• Example
CREATE TABLE tblDoctors (

DoctorID int(11) NOT NULL AUTO_INCREMENT,

Title varchar(25) DEFAULT Dr,

FirstName varchar(20) DEFAULT NULL,

LastName varchar(30) DEFAULT NULL,

HomePhone varchar(15) DEFAULT NULL,

PostCode varchar(10) DEFAULT NULL,

PRIMARY KEY (DoctorID),

KEY DoctorID (DoctorID),

KEY PostCode (PostCode)

)

Field name
Data type

Index field to facilitate
faster search

Creating relationships

16

• After you created the tables, a relationship can be
created between two tables by adding a foreign
key constraint

• Syntax
ALTER TABLE table_name ADD [CONSTRAINT [symbol]] FOREIGN KEY

(column_name) REFERENCES the_other_table_name (column_name) [ON

DELETE CASCADE] [ON UPDATE CASCADE]

• Example
ALTER TABLE tblAppointment ADD CONSTRAINT FOREIGN KEY

(DoctorID) REFERENCES tblDoctors (DoctorID) ON DELETE CASCADE

ON UPDATE CASCADE ;

• Syntax
INSERT INTO tbl_name (col_name1, col_name2 ...)

VALUES (val1, val2 …)

• Example
INSERT INTO tblDoctors (DoctorID, Title, FirstName,

LastName, Address1, Address2, Address3, County,

PostCode, HomePhone, EmployedNow) VALUES

(1, 'Dr', 'Joe', 'Blowphelt', '12, Hill St',

'Witney', NULL, 'Oxfordshire', 'OX3 5EW', '34432432',

1);

Insert Statement

17

• Syntax
UPDATE table_reference SET col_name1={expr1|DEFAULT}

[, col_name2={expr2|DEFAULT}] ...[WHERE

where_condition]

• Example
UPDATE tblReceptionist SET Salary=10000 WHERE

LastName='Peters';

Update Statement

18

• Syntax
DELETE FROM tbl_name [WHERE where_condition]

• Example
DELETE FROM tblReceptionist WHERE ReceptionistID=6;

Delete Statement

19

• Syntax
SELECT select_expr [, select_expr ...] FROM

table_name [WHERE where_condition]

• Examples
SELECT * FROM tblReceptionist;

SELECT FirstName, LastName FROM tblReceptionist;

Select Statement

20

• Database structure + data

• MySQL allows creating a dump file from a database
(usually with .sql extension).

• This file can be used and imported to another
MySQL installation.

• Show an example

Importing and Exporting

21

22

Practice time

Exercises 1 -9
Spend 60 minutes

• Syntax
WHERE where_condition

• Examples

SELECT LastName FROM tblReceptionist WHERE

Salary>10000;

SELECT * FROM tblAppointment WHERE

AppointmentDate<'25/5/2013';

WHERE Clause

23

• Syntax
WHERE column_name1 operator1 value1 [Logical_Operator
column_name2 operator2 value2]

• Operators

• Example
SELECT * FROM tblPatient WHERE Gender='Male' AND
PatientID>=5

Conditions

24

Comparison operators

Comparison Operator Meaning

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<> Not equal to

Logical operators

Name Description

AND, && Logical AND

NOT, ! Negates value

||, OR Logical OR

XOR Logical XOR

http://dev.mysql.com/doc/refman/5.0/en/logical-operators.html#operator_and
http://dev.mysql.com/doc/refman/5.0/en/logical-operators.html#operator_not
http://dev.mysql.com/doc/refman/5.0/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/5.0/en/logical-operators.html#operator_xor

• Syntax
SELECT col_name,… FROM table_name [WHERE

where_condition] [ORDER BY col_name [ASC|DESC]]

• Examples
SELECT * FROM tblReceptionist ORDER BY LastName;

SELECT * FROM tblReceptionist ORDER BY LastName DESC;

SELECT FirstName, LastName FROM tblPatient WHERE

Gender='Female' ORDER BY DOB;

Retrieving Sorted Records

25

• Syntax
SELECT * FROM tbl_name_1, tbl_name_2 [WHERE
where_condition]

• Using Alias
SELECT alias1.*, alias2.fieldX FROM tbl_name_1 AS alias1,
tbl_name_2 AS alias2 [WHERE where_condition]

• Example
SELECT r.FirstName, r.LastName, app.AppointmentDate FROM
tblReceptionist AS r, tblAppointment as app WHERE
app.ReceptionistID = r.ReceptionistID

• Note: full table name can be used as an alias instead but it is not
recommended especially when the same table needs to be joined to itself.

Querying Multiple Tables

• A subquery is a SELECT statement within
another statement.

• Syntax
SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM

t2 [WHERE …])

• It is recommended to use aliases especially
when a field name is the same in two tables.

• Example
SELECT appoint.* FROM tblAppointment AS appoint WHERE

appoint.ReceptionistID = (SELECT r.ReceptionistID

from tblReceptionist AS r WHERE r.LastName = 'Burns')

Subquery

27

• It is a subquery but is used when the subquery
return zero or more records.

• Syntax (two scenarios)
SELECT * FROM t1 WHERE column1 IN
('value1','value2','value3' …)

SELECT * FROM t1 WHERE column1 IN (SELECT column from
t2 [WHERE where_condition])

• Examples
SELECT * FROM tblDoctors WHERE LastName IN
('Lockwood','Smith')

SELECT * FROM tblDoctors WHERE DoctorID IN (SELECT
DoctorID from tblAppointment WHERE
AppointmentDate>'10/10/2013')

IN operator

28

• LIKE, NOT LIKE, STRCMP

• Syntax
Str1 LIKE Str2

Str1 NOT LIKE Str2

STRCMP (expr1, expr2)

• Within the string we can use % to represent 0 or
more characters and _ to represent any single
character.

• Examples
SELECT * FROM tblDoctors WHERE LastName LIKE 'S%'

SELECT * FROM tblReceptionist WHERE PostCode LIKE 'OX4%'

SELECT * FROM tblPatient WHERE STRCMP(LastName,'P')=1

String Comparison

29

The BETWEEN Operator

• BETWEEN is an operator that determines
whether a value occurs within a given range of
values.

• Syntax
WHERE column_name BETWEEN value1 AND value2

• Example
SELECT LastName, Salary FROM tblReceptionist WHERE

Salary BETWEEN 9000 AND 12000

30

• Grouping records

• The HAVING Clause

• Aggregate Functions
• Dealing with NULL Entries

• REGEXP

• JOINS

• EXISTS operator

• Triggers

• phpMyAdmin designer

• etc …

Advanced Topics

31

Where to find some help

• Google is your friend

• http://dev.mysql.com

• www.w3schools.com/sql/

• www.stackoverflow.com

• LinkedIn Learning

32

• Formerly known as Lynda.com

• It is free

• It is in support of the IT Learning Centre
activities

• ITLC will still offer a full range of classroom-
based courses

• ITLC is happy to work with people around the
University to help them use LinkedIn Learning
effectively in their departments and colleges

• https://help.it.ox.ac.uk/courses/molly

LinkedIn Learning

33

https://help.it.ox.ac.uk/courses/molly

Other courses

• IT Learning centre
course:

https://skills.it.ox.ac.uk/
courses-home

• MySQL further
techniques

• Programming
▪ Concepts

▪ Perl

▪ Python

▪ C++

▪ Java

▪ JavaScript

▪ MATLAB

▪ PHP

• IT Learning Portfolio
https://skills.it.ox.ac.uk/
it-learning-portfolio

34

https://skills.it.ox.ac.uk/courses-home
https://skills.it.ox.ac.uk/it-learning-portfolio

Please respond to the feedback survey

mohammad.yaqub@it.ox.ac.uk

