
Dr Peet Morris
peet.morris@it.ox.ac.uk

Python Kick-off (Extended)

What's Covered in this Kick-Off
 Main aim – to provide Python language basics, e.g…

 What is Python and how do I use it?

 Options for writing and running Python programs (code editors and the like)

 Python syntax and basic operations on objects
 Iteration & Decision Making
 Python's Fundamental Data Types

 integers, floats, strings, lists, tuples, sets, dictionaries

 The makeup of a Python program
 Scripts, Modules, Packages
 Python's Standard Library
 Installing additional modules with Pip and PyPi

 At the end of the Kick-off
 You'll get a copy of the slides (inc notes)

 Various post-course 'Challenge Problems' for you to work on to consolidate your
knowledge (c/w code snippets and model answers)

 Repeated
 Slides – me talking, showing you stuff; you asking questions

 Followed by

 Together as a group we'll solve a problem by writing code
 Followed by

 Individual or group problem-solving (a sort of real-time homework)

How it Runs

Code

Solve

Slides

Python
 Created by Guido van Rossum (1991)
 Latest major version 3.10.5 (06/06/2022)

 What's New in 3.10

 Interpreted & Compiled to Byte Code (CPython)
 Other special implementations available. For example, a version that runs on

microcontrollers.

 Dynamically typed

Python – The Library, and other Packages
 Standard Modules/Packages (337)

 docs.python.org/3/py-modindex.html
 Others

 pypi.python.org/pypi

 270,000 packages/projects

 Graphical user interfaces
 Web frameworks
 Multimedia
 Databases
 Networking
 Test frameworks
 Automation
 Web scraping

 System administration
 Scientific computing
 Text and NL processing
 Image processing
 Machine learning and AI
 Games development
 Home automation
 Financial
 ...

docs.python.org/3.10/library/index.html

The Python REPL
Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Python 3.10.0 (64-bit)

(Eric) Idle sourceforge.net/projects/idlex

Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

n = 2
n ** n ** n ** n
65536

IDLE Shell 3.10.0

n = 2
n ** n ** n ** n
print(n)

C:\first.py

Installing a Python IDE
wiki.python.org/moin/IntegratedDevelopmentEnvironments

sublimetext.comanaconda.com

repl.it jupyter.orgcodeskulptor.org

Set the default configuration
code.visualstudiopycharm

pyscripter

colab.research.google.com

PyScripter (Windows)

*** Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)] on win32. ***
>>>

Using variables. E = mc2

m = 1/1000 # kilograms.

c = 299_792_458 # metres per second.

e = m * (c ** 2) # joules.

eInTonOfTNT = 4.184 * 10 ** 9 # gigajoules.

print(round(e / eInTonOfTNT)) # energy in 1 gram of anything
 # equal to 21,481 tons of TNT.

21484

>>>

Built-in Data Types
Type Mutable Iterable

 int No n/a

 bool No n/a

 float No n/a

 str No n/a

 set Yes Yes

 dict (immutable keys, values) Yes Yes

 list (indexes numbers) Yes Yes

 tuple No Yes

See also: Collections – other high-performance container datatypes

Operators
 Operators: + - / * // % ** (% is modulus; // is integer division)

 Bitwise: & | ~ ^ << >> (treating numbers as binary bits)

 Logical: and or not (if this or that, and not the other)

 Other: in (membership) is (identity)

 Comparison: == != >= <= > <

Decision Making

value check.
#
is x's value the same as n's value?

if x == n: # testing == results in either True or False

 do something

else: # x and n don't have the same value. How do they differ?

 do something else

if ____ and ____ and not ____ or ____:

Decision Making
if httpStatus == 400:

 print("Bad request")

elif httpStatus == 401 or httpStatus == 403: # elif means 'else if'

 print("Forbidden")

elif httpStatus == 404:

 print("Not found")

elif httpStatus == 418:

 print("I'm a teapot!")

else: # Nothing else matched httpStatus' value, so do this.

 print("Something went wrong, but who knows what!")

Decision Making
if httpStatus == 400:

 print("Bad request")

elif httpStatus in (401, 403): # (401, 403) a 'Tuple' containing two values.

 print("Forbidden")

elif httpStatus == 404:

 print("Not found")

elif httpStatus == 418:

 print("I'm a teapot!")

else:

 print("Something went wrong, but who knows what!")

Decision Making – match, new in 3.10.0
match httpStatus:

 case 400:
 print("Bad request")

 case 401 | 403:
 print("Forbidden")

 case 404:
 print("Not found")

 case 418:
 print("I'm a teapot!")

 case _:
 print("Something went wrong, but who knows what!")

Much more powerful than this.

n = 5
i = 1

Or
n = 5; i = 1
n, i = 5, 1

while i <= n: # while True
 #
 print(i) # do this
 #
 i = i + 1 # and this

print('Done')

Iteration/Repetition

for i in [1, 2, 3, 4, 5]: # a 'List'.

 print(i)

print('Done')

n = 5

for i in range(1, n + 1):

 print(i)

print('Done')

Problem Work-Through

 Write a program that continually re-calculates a value in a
loop; stopping only if the calculated value is ever equal to 1:
 Rules:

 1. Prompt for an arbitrary positive whole number.

 2. If the number's value is 1, the program terminates

 3. Otherwise, the program outputs the current value, and then checks
whether the value is odd or even

 If it is even, the program sets the current value to a new one by dividing it by 2,
otherwise the program updates the current value by multiplying it by 3 and
adding 1

 Return to step 2.

6

3

10

5

16

8

4

2

1

Individual or Group Problem Solving

Real-time Problem (choose 1)
 Write a program that loops through n

values, 1 – 100:

 if n is exactly divisible by 3, output 'fizz'

 if n is exactly divisible by 5, output 'buzz'

 if n is exactly divisible by both 5 and 3,
output 'fizzbuzz'

 if none of the above, just output n's value

 Modify the 3n + 1 code:

 Modify the code so as to count the
number of loops it makes before
stopping, e.g., an input value of 100
decays to 1 in 26 loop-cycles

 Try different starting values, what is
your personal record for the
number of cycles taken for a
particular input?

 Can you find a starting value so that
the code never completes (n never
goes to 1)?

Fizzbuzz – a solution

for n in range(1, 100 + 1):

 if n % 3 == 0 and n % 5 == 0: print('fizzbuzz')

 elif n % 3 == 0: print('fizz')

 elif n % 5 == 0: print('buzz')

 else: print(n)

Fizzbuzz – a solution

for n in range(1, 100 + 1):

 if n % 15 == 0: print('fizzbuzz')

 elif n % 3 == 0: print('fizz')

 elif n % 5 == 0: print('buzz')

 else: print(n)

Fizzbuzz – a solution

for n in range(1, 100 + 1):

 s = '' # empty string, length is zero.

 if n % 3 == 0: s += 'fizz' # same as s = s + 'fizz'.

 if n % 5 == 0: s += 'buzz'

 if len(s) == 0: s = str(n) # s is still empty? Set it to string version of n.

 print(s)

3n + 1 Problem (the Collatz Conjecture)

Paul Erdős said, "Mathematics
may not be ready for such
problems".

Lothar Collatz

n = abs(int(input('Enter a whole positive integer value')))

while True:

 print(n)

 if n == 1:
 break # we're done, breaks out of the loop.

 if n & 1: # n is Odd. Could also use if n % 2 == 1, or simply, if n % 2:

 n *= 3 # same as n = n * 3.
 n += 1 # same as n = n + 1.

 else: # n is Even.

 n //= 2 # same as n = n // 2.

Further reading

Outputting values
print(x, y)

print("x is ", end = ''); print(x, end = ''); print(", y is ", end = ''); print(y)

print("x is ", x, ", y is ", y)

print("x is " + str(x) + ", y is " + str(y))

print("x is %d, y is %.1f" % (x, y)) # printf style, from C/C++

print("x is {}, y is {}".format(x, y)) # format >= Python 2.6

print("x is {0}, x + y is {0} + {1} = {2}".format(x, y, x + y))

print(f"x is {x}, x + y is {x} + {y} = {x + y}") # f-string >= Python 3.6

old ways to
format output

new way to
format output

import
Math module functions
 import math

 You can now access any math function by putting math. in front of
it:

 print(math.sqrt(5))

2.2360679774997898

 from math import *

 print(floor(log(255, 2) + 1))

8

A few math module functions (use dir(math) for entire list)

Name Description
ceil(x) Ceiling of x
cos(x) Cosine of x
degrees(x) Converts x from radians to

degrees
exp(x) e to the power of x
factorial(n) Calculates n! = 1*2*3*…*n

n must be an integer
log(x) Base e logarithm of x
log(x, b) Base b logarithm of x
pow(x, y) x to the power of y
radians(x) Converts x from degrees to

radians
sin(x) Sine of x
sqrt(x) Square root of x
tan(x) Tangent of x

Built-in Data Types
Type Mutable Iterable Subscriptable

 int No n/a n/a

 bool No n/a n/a

 float No n/a n/a

 str No Yes Yes

 list Yes Yes Yes

 dict Yes (values) Yes Yes (keys)

 tuple No (ish) Yes Yes

 set Yes Yes No

See also: Collections - High-performance container datatypes

List – ordered, indexed
 Created using [] or list(), e.g.,

 l = [0, '1', 2] print(l) [0, '1', 2]

 l = list('012') print(l) ['0', '1', '2']

 l = [int(n) for n in '012'] # a list comprehension, [0, 1, 2].

 Iterable
 for n in l: print(n)

 Mutable / sliceable
 l.append(4)

 l = l[1:] # Slicing.

 Indexable
 print(l[1])

Dictionaries – ordered (3.6), indexed
 Created using {} or dict(), e.g.,

 d = {0:'1', 1:'2', 2:'3'} print(d) {0:'1', 1:'2', 2:'3'}

 print(list(d)) [0, 1, 2] # keys.

 d = {a:str(b) for a, b in enumerate(range(1, 4))} # dictionary comprehension.

 Iterable
 for n in d: print(n) # prints keys. print(n, d[n]) prints keys and values.

 Mutable
 d[len(d)] = '4' # changes the 2 key's value to '4'.

 Indexable
 print(d[1]) # prints the value associated with the key of 1, which is '2'.

tuple – ordered, indexed
 Created using () or tuple(), or , e.g.,

 t = (0, '1', 2) print(t) (0, '1', 2)

 t = 0, '1', 2 print(t) (0, '1', 2)

 t = tuple('012') print(t) ('0', '1', '2')

 t = (int(n) for n in '012') # a generator.

 Iterable
 for n in t: print(n)

 Immutable / sliceable
 t = t[1:] # Slicing.

 Indexable
 print(t[1])

Set – unordered, unindexed
 Created using {?} or set(), e.g.,

 s = {0, '1', 2} s.add(2) print(s) {0, '1', 2}

 s = set('012') print(s) {'0', '1', '2'}

 s = {int(n) for n in '012'} print(3 not in s) # same for any iterable.

 Iterable
 for n in s: print(n)

 Mutable
 s.add(4); s.remove(3)

 Set operations
 s.difference(k); s - k

 s.intersection(k); s & k

 s.union(k); s | k

 s.symmetric_difference(k); s ^ k

 s.subset(k)

 s.superset(k)

Set
 s.difference(k); s - k

 s.intersection(k); s & k

 s.union(k); s | k

 s.symmetric_difference(k); s ^ k

 s = set([1, 2, 3]); k = set([3, 4, 5])

 print(s) # {1, 2, 3}

 print(k) # {3, 4, 5}

 print(s - k) # {1, 2}

 print(s & k) # {3}

 print(s | k) # {1, 2, 3, 4, 5}

 print(s ^ k) # {1, 2, 4, 5} … {(s – k) U (k – s)}

The Monty Hall Problem
Problem Walk-Through

Problem Work-Through

 To test Marilyn's assertion, let's write a simulation of 'The Monty Hall Problem'.

 Monte Carlo Simulation (inferential statistics)

Monty Hall
import random

doors = [1, 2, 3]

games = 1000

carsWon = 0

for n in range(games):

 carDoor = random.choice(doors)

 playerDoor = random.choice(doors)

 # The host opens a different door to reveal a goat

 # (always able to do this as there are 2 goats).

 montyDoor = random.choice(list(set(doors) - set([carDoor, playerDoor])))

 # ~~~~ To stick, just comment out the next line –

 # it implements that the player is swapping doors.

 playerDoor = list(set(doors) - set([playerDoor, montyDoor]))[0]

if playerDoor == carDoor:

 carsWon += 1

print('The player won the car ' +

 str(round(carsWon / (games / 100))) +

 '% percent of the time')

See cslab.com/monty for more.

Individual or Group Problem Solving

Real-time Problem
 Modify the 3n + 1 code:

 If we didn't break out of the loop when we
get to 1, we would loop endlessly over 4,
2, 1.

Alter your code to use a Python set to
detect that we've previously seen an
output, and break out of your loop when
that's seen.

 Can you find other (hailstone) sequences
by altering the algorithm slightly, i.e.,
those not terminating in 4, 2, 1? Hint,
you'll need to start with negative starting
values and look no further than, say, -20.

Can you do this programmatically (test a
range of inputs consecutively in an outer
loop)?

 Use a list comprehension to create a list
of the squares of the integers 1 – 10
inclusive.
 Then; a bit more complex – use enumerate()

to build a list of two-element lists – the
thing being squared, and the squared result,
e.g.,

[[1, 1], # First enumeration, 12 is 1
 [2, 4], # Second enumeration 22 is 4.
 [3, 9], # ...
 [4, 16],
 [5, 25],
 [6, 36],
 [7, 49],
 [8, 64],
 [9, 81],
 [10, 100]]

Real-time Problem
 Write the beginnings of a guessing game in which the program gives

hints to the user. 'Pick a number between say, 1 and 10. Count how
many guesses are required.

1 10

5

8

6

7

5 is too low

8 is too high

6 is too low

Answer

3n + 1 Problem (using a set)
n = int(input('Enter a whole integer value'))

s = set() # using a set.

while True:

 print(n)

 if n in s: # set membership test.

 break

 s.add(n) # here only if n not a member of set s.

 if n & 1: # n is Odd. Could also use if n % 2 == 1:

 n *= 3
 n += 1

 else: # n is Even.

 n //= 2

import
Math module functions
 import math

 You can now access any math function by putting math. in front of
it:

 print(math.sqrt(5))

2.2360679774997898

 from math import *

 print(floor(log(255, 2) + 1))

8

A few math module functions (use dir(math) for entire list)

Name Description
ceil(x) Ceiling of x
cos(x) Cosine of x
degrees(x) Converts x from radians to

degrees
exp(x) e to the power of x
factorial(n) Calculates n! = 1*2*3*…*n

n must be an integer
log(x) Base e logarithm of x
log(x, b) Base b logarithm of x
pow(x, y) x to the power of y
radians(x) Converts x from degrees to

radians
sin(x) Sine of x
sqrt(x) Square root of x
tan(x) Tangent of x

def factorial(n):

 prod = 1

 for i in range(2, n + 1):

 prod *= i # same as prod = prod * i

 return prod

n = 100

result = factorial(n)

Functions
import math

n = 100

result = math.factorial(n)

def factorial(n):

 if n == 1:

 return 1

 else:

 return n * factorial(n - 1)

n = 100

result = factorial(n)

Functions
import math

n = 100

result = math.factorial(n)

Recursion vs Iteration
def fibonacci(n):

 if n < 2:

 return n

 else:

 return fibonacci(n - 1) + fibonacci(n - 2)

n = 11

print([fibonacci(i) for i in range(n)])

def fibonacci(n):

 a = 1

 b = 1

 for _ in range(1, n):

 t = a

 a = b

 b = t + b

 return a

n = 11

print([fibonacci(n) for n in range(n)])

>>> 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Recursion - fibonacci
import time

def fibonacci(n):

 if n < 2:

 return n

 else:

 return fibonacci(n - 1) + fibonacci(n - 2)

for n in [1, 5, 10, 15, 20, 25, 30, 35]: # Increase in small increments.

 t1 = time.perf_counter_ns() # Nano second timer.

 k = fibonacci(n)

 t2 = time.perf_counter_ns()

 print(f'Computing the {n}th fib number ({k}) took {t2 - t1:,} nano seconds')

O(2n)

A bit more pythonic
def fibonacci(n):

 a, b = 1, 1

 for _ in range(1, n):

 a, b = b, a + b

 return a

print(fibonacci(10))

Monty Hall
import random

doors = [1, 2, 3]

def playGame():

 carDoor = random.choice(doors)

 playerDoor = random.choice(doors)

 # The host opens a different door to reveal a goat

 # (always able to do this as there are 2 goats).

 hostDoor = random.choice(list(set(doors) - set([carDoor, playerDoor])))

 # ~~~~ To stick, just comment out the next line –

 # it implements that the player is swapping doors.

 playerDoor = (set(doors) - set([playerDoor, hostDoor])).pop()

 return True if playerDoor == carDoor else False

 carsWon = 0

 for games in range(1000):

 if playGame():

 carsWon += 1

 print('The player won the car ' +

 str(round(carsWon / (games / 100))) +

 '% percent of the time')

Strings – immutable, ordered, indexed
s = 'hello world' # variable called s

print(len(s)) # number of characters in s. 11

s = s.title() # title case s, assign back to s

print(s) # 'Hello World'

print(s.find('o')) # o is 4th char from left starting from 0

print(s.rfind('o')) # different o in position 7

print(''.join(reversed(s))) # 'dlroW olleH'

print('Wo' in s) # True

n = s.find('World') # n is 6

print(s[n:]) # 'World'

print(s[0::2]) # 'HloWrd'

print(s[::-1]) # 'dlroW olleH'

s =

s[0] same as s[0:1]

s[1] same as s[1:2]

s[-4:-2] or s[1:3]

Strings and 'Slicing'

s[0] s[1] s[2] s[3] s[4]

h e l l o

s = 'hello'

s[start:xstop]

h

e

e l

Class
import random

class dice():

 def __init__(self, sides = None):

 self.sides = 6 if sides is None else sides

 self.throws = [n for n in range(1, self.sides + 1)]

 def throw(self): # throw is a method of dice.

 return random.choice(self.throws)

d1 = dice(); d2 = dice(20)

print(d1.throw(), d2.throw())

Problem Work-Through

 Write a program to generate a
sequence of coin tosses. e.g.,
HTH.

 On average, how many coin-
tosses are needed to see a given
sequence?

Sequence Tosses
--
HTTTHHTTHHTTTTHTH 17
HHHTTTHHTTHHTH 14
HHHHTH 6
HHTH 4
HHHTTHHHTTTTHHTTHTH 19
HHTTHHHHHTTHHHTTHHHHTH 22
HTTHHHTH 8
TTHHTTTHTTTHTH 14
TTTHHTTTTTHTH 13
TTHTH 5
THTTHTH 7
HTH 3
THHTH 5
HHTTTTTHHHHHTTTHTH 18
HHHTH 5

Average # of tosses to see HTH was …

Package installation
(pip/pip3)

 Use pip to

 pip install numpy

and

 pip install matplotlib

 Used on the following
slide

import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
data_set = mu + sigma * np.random.randn(10000)

plt.hist(data_set, 125, density = 1, facecolor = 'g', alpha = 0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.text(60, .025, '$\mu=100, \sigma=15$')
plt.xlim(40, 160)
plt.ylim(0, 0.03)
plt.show()

Data Science Courses - https://www.linkedin.com/...

Copy the code below into a new module to test your installation

Homework
If HTT beats HTH, what if anything beats HTT? And does something beat that etc? Is
there an optimal sequence?

You can use this code to produce a list l of all the possible starting permutations:

import itertools

rep = 3

l = list(itertools.product('HT', repeat = rep))

for n in range(len(l)):

 l[n] = ''.join(l[n])

print(l, len(l))

Homework

 Along with the slides from today,
and the coin tossing simulation and
other code, I am giving you the
code of a program that can access
and parse RSS feeds, in particular,
the BBC's.

 At the end of the code there are
some suggestions for modifying
the it.

Resources
 Real Python – Link

 Python Programming Tutorials – Link

 Linked-In Learning (of course!)

 Socratica Python - Link

 Anything Python by Corey Schafer - Link

 Any YouTube videos by Raymond Hettinger

 Pandas (Python Data Analysis Library) - Link

 A little more technical: Python as C++’s Limiting Case - Link

Resources – Me!

If you would like to book a one-to-one session with me,
please just email me to arrange a suitable date and time.

Always happy to help. And it's free.

Any final questions?

