
Dr Peet Morris
peet.morris@it.ox.ac.uk

Python Kick-off (Extended)

Feel free to contact me with questions about Python both during and after the
course. I'm always happy to help.

1

What's Covered in this Kick-Off
 Main aim – to provide Python language basics, e.g…

 What is Python and how do I use it?

 Options for writing and running Python programs (code editors and the like)

 Python syntax and basic operations on objects
 Iteration & Decision Making
 Python's Fundamental Data Types

 integers, floats, strings, lists, tuples, sets, dictionaries

 The makeup of a Python program
 Scripts, Modules, Packages
 Python's Standard Library
 Installing additional modules with Pip and PyPi

This is an introduction to Python, not a course on how to use it once the basics have
been learned.

2

 At the end of the Kick-off
 You'll get a copy of the slides (inc notes)

 Various post-course 'Challenge Problems' for you to work on to consolidate your
knowledge (c/w code snippets and model answers)

 Repeated
 Slides – me talking, showing you stuff; you asking questions

 Followed by

 Together as a group we'll solve a problem by writing code
 Followed by

 Individual or group problem-solving (a sort of real-time homework)

How it Runs

Code

Solve

Slides

3

Python
 Created by Guido van Rossum (1991)
 Latest major version 3.10.5 (06/06/2022)

 What's New in 3.10

 Interpreted & Compiled to Byte Code (CPython)
 Other special implementations available. For example, a version that runs on

microcontrollers.

 Dynamically typed

Python programs consist of a starting script (.py file), which may or may not import
other scripts (.py files). Imported scripts are referred to not as scripts, but as
modules.

A starting script is usually interpreted: in real-time, Python parses and acts upon the
text (your code) in your script. However, imported modules are normally compiled
(automatically) to a form of compiled bytecode; this is still however interpreted, but
will run more efficiently.

When an imported module is compiled, a new file with a .pyc file is created to
contain the bytecode. This normally happens just once (as module code rarely
changes). However, if a change is detected, a module will be re-compiled down to
bytecode.

.pyc files are stored in a subdirectory beneath the .py module file called __pycache__

Python is a language specification, and CPython is an implementation of that
specification. It is the gold standard version, and, as it is created by the core
developers (who are in charge of the specification), it will always be more up-to-date
than any other versions.

4

Python – The Library, and other Packages
 Standard Modules/Packages (337)

 docs.python.org/3/py-modindex.html
 Others

 pypi.python.org/pypi

 270,000 packages/projects

 Graphical user interfaces
 Web frameworks
 Multimedia
 Databases
 Networking
 Test frameworks
 Automation
 Web scraping

 System administration
 Scientific computing
 Text and NL processing
 Image processing
 Machine learning and AI
 Games development
 Home automation
 Financial
 ...

docs.python.org/3.10/library/index.html

When you install Python (the interpreter) you will also install a library of extra
modules referred to as the Python Standard Library. For example, the library contains
modules to perform text processing, interacting with the host operating system,
sending email, and very much more.

On top of this, https://pypi.python.org (PyPi) contains 1000s of extra modules and
packages developed and shared by the Python community that can be searched,
browsed and installed.

A Package is a group of modules that work together to perform a desired outcome.

https://packaging.python.org/en/latest/tutorials/installing-packages/

5

The Python REPL
Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Python 3.10.0 (64-bit)

The Python interpreter is variously called Python.exe (on Windows), or simply Python
or a close variant on a Mac or Linux box where it is simply labelled as being
executable (it doesn't need a '.exe' type of ending). On Windows you may not see
the .exe ending as this is also normally hidden.

If you were to simply run Python, you would see what's called 'the repple' (REPL).
REPL is an acronym which stands for Read; Evaluate; Print; Loop.

It is unusual to start Python like this unless you want to use it as a glorified calculator
perhaps. However, you can write complete programs within the REPL, although you
cannot save them away for later use.

Normally, the Python interpreter will be started automatically if you were to run a
python script (by double-clicking it perhaps). In that case it would be equivalent to
starting the interpreter and passing it a command line argument (the name of the
script to run), e.g., python.exe myscript.py on Windows. If started in this way, the
REPL environment isn't actually shown, just the output – if there is any – from your
script/program.

6

(Eric) Idle sourceforge.net/projects/idlex

Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

n = 2
n ** n ** n ** n
65536

IDLE Shell 3.10.0

n = 2
n ** n ** n ** n
print(n)

C:\first.py

Scripts etc are normally created using a smart editor – that understands the Python
language syntax.

IDLE is such an editor/environment, and it comes with a CPython installation.

When developing programs this way it's normal to also see a REPL environment
appear alongside the editor. This will show your program's output and will also allow
you to inspect and debug your code.

Fully featured development environments are referred to as IDEs; Integrated
Development Environments.

Variables have names, examples might be x, y, or taxRate. Variables always hold a
value – in reality, they are a pseudonym for the value they hold. Values represented
by - stored in - a variable may be changed; thus the name variable.

x = 10 # x is another name for the value 10.
x = x + 1 # x is another name for the value 11.

More on variables soon.

7

Installing a Python IDE
wiki.python.org/moin/IntegratedDevelopmentEnvironments

sublimetext.comanaconda.com

repl.it jupyter.orgcodeskulptor.org

Set the default configuration
code.visualstudiopycharm

pyscripter

colab.research.google.com

Some examples of IDEs and Smart Editors. The Python.org website contains a
complete list of each.

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

https://wiki.python.org/moin/PythonEditors

8

PyScripter (Windows)

*** Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)] on win32. ***
>>>

PyScripter is my personal favourite IDE for Python work. However, it's probably not
the best – but old dogs are reluctant to learn new tricks.

9

Using variables. E = mc2

m = 1/1000 # kilograms.

c = 299_792_458 # metres per second.

e = m * (c ** 2) # joules.

eInTonOfTNT = 4.184 * 10 ** 9 # gigajoules.

print(round(e / eInTonOfTNT)) # energy in 1 gram of anything
 # equal to 21,481 tons of TNT.

21484

>>>

Variables, are not only useful if we want to change their value; we mainly use them to
make our code clearer: by naming things, and splitting up complex statements, e.g.,
can you imagine making sense of the following without them?

print((1 / 1000 * 299_792_458 ** 2) / (4.184 * 10 ** 9))

FYI, a sugar cube weighs about 2.5 grams.

10

Built-in Data Types
Type Mutable Iterable

 int No n/a

 bool No n/a

 float No n/a

 str No n/a

 set Yes Yes

 dict (immutable keys, values) Yes Yes

 list (indexes numbers) Yes Yes

 tuple No Yes

See also: Collections – other high-performance container datatypes

As mentioned earlier; it's usual to use variables – usually with meaningful names, for
example, we could have a variable called basicTaxRate. We can set an actual value
into this using an assignment operator, followed by a value, e.g. basicTaxRate = 20.
Now, basicTaxRate is really a pseudonym for the value set into it (which can change –
thus the name variable)

You can imagine that when reading code it will probably be more obvious what the
code is doing if we use sensible names:

netSalary = grossSalary ÷ 100 × basicTaxRate

Of course, netSalary and grossSalary will also have been created and set
elsewhere. You can name your variables anyway you like really, the style used here is
called camelCasing.

We use variables because if, say, the tax rate changed, we could reflect that
throughout our code by simply changing a single line, e.g., basicTaxRate = 25.

The built-in and fundamental types of variables we can create are shown in the slide.

11

Operators
 Operators: + - / * // % ** (% is modulus; // is integer division)

 Bitwise: & | ~ ^ << >> (treating numbers as binary bits)

 Logical: and or not (if this or that, and not the other)

 Other: in (membership) is (identity)

 Comparison: == != >= <= > <

On the previous slide ÷ and × were used to show division and multiplication. Python
has special symbols for these and other operations, e.g., // means integer division
(the result will always be a whole number) and / is used for floating point or real
division.

Integers can be treated as binary digits, e.g.,

n = 3 # 00000011 - 3 in binary.
n = n << 1 # 00000110 - bits shifted one to the left. 6 in binary.
print(n) # Will output 6.

The logical operators allow us to build Boolean expressions that will evaluate to being
either True or False, so that we can make decisions e.g.,

if isSunny and (isSummer or isSpring) and hour >= 17 then ...

12

Decision Making

value check.
#
is x's value the same as n's value?

if x == n: # testing == results in either True or False

 do something

else: # x and n don't have the same value. How do they differ?

 do something else

if ____ and ____ and not ____ or ____:

Basic branching/decision-making is done using an if ... else construct.

if isSunny and (isSummer or isSpring) and hour >= 17:

Go for a walk?
else:

Have to work?
Perhaps we also need to check what day it is!

Note the layout and the use of colons.

You might wonder about the order in which operators are applied, this is called
Operator Precedence:

https://docs.python.org/3/reference/expressions.html#operator-precedence

13

Decision Making
if httpStatus == 400:

 print("Bad request")

elif httpStatus == 401 or httpStatus == 403: # elif means 'else if'

 print("Forbidden")

elif httpStatus == 404:

 print("Not found")

elif httpStatus == 418:

 print("I'm a teapot!")

else: # Nothing else matched httpStatus' value, so do this.

 print("Something went wrong, but who knows what!")

Maybe there are possibly more subtle states that we have to check for? In that case
we have elif – meaning else if.

Note that, say, httpStatus had the value 401, that as soon as we output
'Forbidden' we don't check httpStatus against any other possible values: as soon
as we find a match, we're done checking.

14

Decision Making
if httpStatus == 400:

 print("Bad request")

elif httpStatus in (401, 403): # (401, 403) a 'Tuple' containing two values.

 print("Forbidden")

elif httpStatus == 404:

 print("Not found")

elif httpStatus == 418:

 print("I'm a teapot!")

else:

 print("Something went wrong, but who knows what!")

A more Pythonic way to check for either 401 or 403, is to see whether httpStatus'
value is to also be found in the tuple containing the values 401 and 403.

More on Tuples later.

15

Decision Making – match, new in 3.10.0
match httpStatus:

 case 400:
 print("Bad request")

 case 401 | 403:
 print("Forbidden")

 case 404:
 print("Not found")

 case 418:
 print("I'm a teapot!")

 case _:
 print("Something went wrong, but who knows what!")

Much more powerful than this.

Introduced in Python 3.10, the match and case keywords may be used to check
httpStatus like this.

Note the use of | (looks like the bitwise OR operator) is used to test for 401 or 403.

16

n = 5
i = 1

Or
n = 5; i = 1
n, i = 5, 1

while i <= n: # while True
 #
 print(i) # do this
 #
 i = i + 1 # and this

print('Done')

Iteration/Repetition

for i in [1, 2, 3, 4, 5]: # a 'List'.

 print(i)

print('Done')

n = 5

for i in range(1, n + 1):

 print(i)

print('Done')

The only ways to iterate in Python are using while or for.

The body of the while loop here will run whenever it is True that i's value is less
than or equal to n's value. Because i is being altered within the body of the loop,
there will come a time when i's value will be the same as n's. At that point, the loop
exits and the next line of code will be interpreted and the word 'Done' will be output.

The range() function creates a range object, which is a sort of generator. Here,
range() will, when asked, generate the values 1 through to 5, one at a time. The for
i in will cause the sort-of-generator to run, setting each value generated into i. On
each new value set into i, the body (indented part) of the for loop is entered and
code found there is run. Once the sort-of-generator range is exhausted, the loop
exits.

A generator only actually creates values as and when they are needed. The list
equivalent code on the slide creates all of the values ahead of time. Not a problem
here, but imagine say ranging over a billion values.

17

Problem Work-Through

 Write a program that continually re-calculates a value in a
loop; stopping only if the calculated value is ever equal to 1:
 Rules:

 1. Prompt for an arbitrary positive whole number.

 2. If the number's value is 1, the program terminates

 3. Otherwise, the program outputs the current value, and then checks
whether the value is odd or even

 If it is even, the program sets the current value to a new one by dividing it by 2,
otherwise the program updates the current value by multiplying it by 3 and
adding 1

 Return to step 2.

6

3

10

5

16

8

4

2

1

input() returns characters, int() converts suitable characters into
a value, abs() makes sure that it's positive.
#
We can nest functions – the output of one becomes the input of
another.
#
n = abs(int(input('Enter a positive whole number: ')))

while n != 1:

print(n)

n % 2 will either be 0 or 1. If 1, we know n was odd.
#
if n % 2:

n = n * 3 + 1
else:

n = n // 2

18

Individual or Group Problem Solving

19

Real-time Problem (choose 1)
 Write a program that loops through n

values, 1 – 100:

 if n is exactly divisible by 3, output 'fizz'

 if n is exactly divisible by 5, output 'buzz'

 if n is exactly divisible by both 5 and 3,
output 'fizzbuzz'

 if none of the above, just output n's value

 Modify the 3n + 1 code:

 Modify the code so as to count the
number of loops it makes before
stopping, e.g., an input value of 100
decays to 1 in 26 loop-cycles

 Try different starting values, what is
your personal record for the
number of cycles taken for a
particular input?

 Can you find a starting value so that
the code never completes (n never
goes to 1)?

20

Fizzbuzz – a solution

for n in range(1, 100 + 1):

 if n % 3 == 0 and n % 5 == 0: print('fizzbuzz')

 elif n % 3 == 0: print('fizz')

 elif n % 5 == 0: print('buzz')

 else: print(n)

The initial if could have used parentheses to better show how the expressions will be
evaluated: if (n % 3 == 0) and (n % 5 == 0).

Any non-zero remainder will be consider True, so we could have written the same thing like
this:

if not n % 3 and not n % 5: print('fizzbuzz'), again, we could also use
parentheses to help readers of our code.

if (not (n % 3)) and (not (n % 5)): print('fizzbuzz')

Of course, the code here is dependent on order, e.g., we have to test for the case where n is
exactly divisible by both 5 and 3 first.

21

Fizzbuzz – a solution

for n in range(1, 100 + 1):

 if n % 15 == 0: print('fizzbuzz')

 elif n % 3 == 0: print('fizz')

 elif n % 5 == 0: print('buzz')

 else: print(n)

If n is exactly divisible by both 5 and 3, we can combine the two tests into one and just test if n
is exactly divisible by 15.

22

Fizzbuzz – a solution

for n in range(1, 100 + 1):

 s = '' # empty string, length is zero.

 if n % 3 == 0: s += 'fizz' # same as s = s + 'fizz'.

 if n % 5 == 0: s += 'buzz'

 if len(s) == 0: s = str(n) # s is still empty? Set it to string version of n.

 print(s)

This puzzle can be solved in so many different ways (as can more-or-less anything that
can be solved via a bit of programming).

For example, here are a couple of slightly off the wall solutions to 'fizzbuzz' using
some other Python features and syntax.

print('\n'.join(["fizzBuzz" if not x % 3 and not x % 5 else
"fizz" if not x % 3 else "fuzz" if not x % 5 else str(x) for x
in range(1, 101)]))

print("\n".join(["fizz" * (i % 3 == 0) + "buzz" * (i % 5 == 0)
or str(i) for i in range(1, 101)]))

The skill is in choosing the right solution to a problem of course; and that may depend
on many factors. E.g., does 'right' mean 'optimal' (speed), or simply 'clear' perhaps? I
think we'd argue that the two solutions just above are less clear than the one on the
slide?

By the way, the * in the second example is used to produce any number of copies of a
string, e.g., "fizz". So "fizz" * 2 results in "fizzfizz" and "fizz" * 0 results
in "".

23

3n + 1 Problem (the Collatz Conjecture)

Paul Erdős said, "Mathematics
may not be ready for such
problems".

Lothar Collatz

n = abs(int(input('Enter a whole positive integer value')))

while True:

 print(n)

 if n == 1:
 break # we're done, breaks out of the loop.

 if n & 1: # n is Odd. Could also use if n % 2 == 1, or simply, if n % 2:

 n *= 3 # same as n = n * 3.
 n += 1 # same as n = n + 1.

 else: # n is Even.

 n //= 2 # same as n = n // 2.

Further reading

for n in range(11):

using an 'f string'; print n, left-padded with 1 space if necessary.
#
using bin(), convert n to a binary string; strip off leading '0b'
using [2:], then, right-pad the result to 8 characters in width
padded with zeros if necessary.

print(f'{str(n).ljust(2, " ")} -> {bin(n)[2:].rjust(8, "0")}')

0 -> 00000000 # Note that for every odd value of n, its right-most,
1 -> 00000001 # least-significant bit is '1'.
2 -> 00000010
3 -> 00000011
4 -> 00000100
5 -> 00000101
6 -> 00000110
7 -> 00000111
8 -> 00001000
9 -> 00001001
10 -> 00001010

n & 1 takes the values of n and 1 and tests to see if their least significant bits and the same, consider an
8 bit representation and testing where n is 3.
n = 00000011, 1 = 00000001. n & 1 results in 1 as both 1 and 3 have their lower bit set. They are
each made up of a single 1.

1 is considered True, as is any value other than zero. Thus, if n & 1 is all that's needed, rather than if
n & 1 == 1. The latter may be clearer for some readers of course.

24

Outputting values
print(x, y)

print("x is ", end = ''); print(x, end = ''); print(", y is ", end = ''); print(y)

print("x is ", x, ", y is ", y)

print("x is " + str(x) + ", y is " + str(y))

print("x is %d, y is %.1f" % (x, y)) # printf style, from C/C++

print("x is {}, y is {}".format(x, y)) # format >= Python 2.6

print("x is {0}, x + y is {0} + {1} = {2}".format(x, y, x + y))

print(f"x is {x}, x + y is {x} + {y} = {x + y}") # f-string >= Python 3.6

old ways to
format output

new way to
format output

The printf style (a C language construction) is original Python, and was superseded by
the easier, and in all ways superior, format style back in 2008 (format was retro-fitted
into Python 2.6 from Python 3.0). In the same manner, the format style introduced in
3.0 is now superseded in 3.6 and later versions by f-strings.

If you are using Python 3.6 or later, use f-strings.

25

import
Math module functions
 import math

 You can now access any math function by putting math. in front of
it:

 print(math.sqrt(5))


2.2360679774997898

 from math import *

 print(floor(log(255, 2) + 1))

8

A few math module functions (use dir(math) for entire list)

Name Description
ceil(x) Ceiling of x
cos(x) Cosine of x
degrees(x) Converts x from radians to

degrees
exp(x) e to the power of x
factorial(n) Calculates n! = 1*2*3*…*n

n must be an integer
log(x) Base e logarithm of x
log(x, b) Base b logarithm of x
pow(x, y) x to the power of y
radians(x) Converts x from degrees to

radians
sin(x) Sine of x
sqrt(x) Square root of x
tan(x) Tangent of x

If you want to know where a module lives, import it, and then use help() like this:

import random
help(random)

At the bottom of the output you'll see something like:

FILE
c:\program files\python310\lib\random.py

However, some modules are built in to the interpreter (over 60 currently). The math module is
like this. If you try the trick above on that you'll see:

FILE
(built-in)

If you want a full list of the available modules you have installed, use help('modules'). If you
want to know which are 'built in', import sys, then use print(sys.builtin_module_names).
Lastly, if you want to know where Python looks for non built-in modules, use import sys, then
print(sys.path)

Built-in Data Types
Type Mutable Iterable Subscriptable

 int No n/a n/a

 bool No n/a n/a

 float No n/a n/a

 str No Yes Yes

 list Yes Yes Yes

 dict Yes (values) Yes Yes (keys)

 tuple No (ish) Yes Yes

 set Yes Yes No

See also: Collections - High-performance container datatypes

Tuples are immutable, but things they contain may be mutable.

n = 10

t = tuple([n, []])

print(t) # outputs (10, [])

t[0] = t[0] + 1 # error, cannot change n.

t[1] = {} # error, second item can't be changed.

t[1].append(42) # all ok, adding an item to the empty list.

print(t) # outputs (10, [42])

27

List – ordered, indexed
 Created using [] or list(), e.g.,

 l = [0, '1', 2] print(l) [0, '1', 2]

 l = list('012') print(l) ['0', '1', '2']

 l = [int(n) for n in '012'] # a list comprehension, [0, 1, 2].

 Iterable
 for n in l: print(n)

 Mutable / sliceable
 l.append(4)

 l = l[1:] # Slicing.

 Indexable
 print(l[1])

Yesterday we saw range() compared to a list of values when looking at for loops:

for i in [1, 2, 3, 4, 5]: # a 'List'.

print(i)

Using a comprehension, we could build the list automatically:

for i in [n for n in range(1, 6)]: # a 'List'.

print(i)

You wouldn't ever do this in real life, but I hope it helps in your understanding.

28

Dictionaries – ordered (3.6), indexed
 Created using {} or dict(), e.g.,

 d = {0:'1', 1:'2', 2:'3'} print(d) {0:'1', 1:'2', 2:'3'}

 print(list(d)) [0, 1, 2] # keys.

 d = {a:str(b) for a, b in enumerate(range(1, 4))} # dictionary comprehension.

 Iterable
 for n in d: print(n) # prints keys. print(n, d[n]) prints keys and values.

 Mutable
 d[len(d)] = '4' # changes the 2 key's value to '4'.

 Indexable
 print(d[1]) # prints the value associated with the key of 1, which is '2'.

for i, j in enumerate(range(100, 106)):

print(i, j)

i tells you which loop context you're operating in (0 – 5), j tells you the value taken
from the range (in this case)

0 100
1 101
2 102
...

for i, j in enumerate('fizzbuzz'):

print(i, j)

0 f
1 i
2 z
...

29

tuple – ordered, indexed
 Created using () or tuple(), or , e.g.,

 t = (0, '1', 2) print(t) (0, '1', 2)

 t = 0, '1', 2 print(t) (0, '1', 2)

 t = tuple('012') print(t) ('0', '1', '2')

 t = (int(n) for n in '012') # a generator.

 Iterable
 for n in t: print(n)

 Immutable / sliceable
 t = t[1:] # Slicing.

 Indexable
 print(t[1])

What's the difference between range() and a tuple generator?

https://treyhunner.com/2018/02/python-range-is-not-an-iterator/

30

Set – unordered, unindexed
 Created using {?} or set(), e.g.,

 s = {0, '1', 2} s.add(2) print(s) {0, '1', 2}

 s = set('012') print(s) {'0', '1', '2'}

 s = {int(n) for n in '012'} print(3 not in s) # same for any iterable.

 Iterable
 for n in s: print(n)

 Mutable
 s.add(4); s.remove(3)

 Set operations
 s.difference(k); s - k

 s.intersection(k); s & k

 s.union(k); s | k

 s.symmetric_difference(k); s ^ k

 s.subset(k)

 s.superset(k)

Sets are unordered – although it may appear that they are if you output them. So, it
doesn't make any sense to index into them using square brackets.

31

Set
 s.difference(k); s - k

 s.intersection(k); s & k

 s.union(k); s | k

 s.symmetric_difference(k); s ^ k

 s = set([1, 2, 3]); k = set([3, 4, 5])

 print(s) # {1, 2, 3}

 print(k) # {3, 4, 5}

 print(s - k) # {1, 2}

 print(s & k) # {3}

 print(s | k) # {1, 2, 3, 4, 5}

 print(s ^ k) # {1, 2, 4, 5} … {(s – k) U (k – s)}

s = set([1, 2, 3]); k = set([3, 4, 5])

print(s, end = ' ') # {1, 2, 3} {3, 4, 5}
print(k)

print(s - k, end = ' ') # {1, 2} {1, 2}
print(s.difference(k))

print(s & k, end = ' ') # {3} {3}
print(s.intersection(k))

print(s | k, end = ' ') # {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6}
print(s.union(k))

print(s ^ k, end = ' ') # {1, 2, 4, 5} {1, 2, 4, 5}
print(s.symmetric_difference(k))

print() normally ends its output by moving the cursor to the beginning of a new line. Called inserting a
carriage-return and new-line (if you know what one is; think typewriters – also, if you know what one is!)

We can prevent that by adding a special trailing specification. Here that's just to insert a space; the next
print()'s output will appear after that space.

Another way of saying that is, if excluded, the trailing expression defaults to be '\n' – which means
output a carriage-return and new-line.

32

The Monty Hall Problem
Problem Walk-Through

Please see: http://cslab.com/monty/

33

The host knows how the car and the goats are distributed.

34

35

92% of Americans thought Marilyn wrong.

36

Problem Work-Through

 To test Marilyn's assertion, let's write a simulation of 'The Monty Hall Problem'.

 Monte Carlo Simulation (inferential statistics)

Even when given explanations, simulations, and formal mathematical proofs, many
people still did not accept that switching is the best strategy. Indeed, Paul Erdős, one
of the most prolific mathematicians in history, remained unconvinced until he was
shown a computer simulation demonstrating vos Savant's predicted result.

https://web.archive.org/web/20140413131827/http://www.decisionsciences.org/De
cisionLine/Vol30/30_1/vazs30_1.pdf

Monte Carlo methods, experiments or simulations, are a broad class of
computational algorithms that rely on repeated random sampling to obtain numerical
results.

The underlying concept is to use randomness to solve problems that might be
deterministic in principle but that have a number of variables and/or states that make
that determinism more difficult to calculate and keep abreast of. They are often
applied to probability problems: in which the human mind often comes to incorrect
conclusions from often simple premises and seemingly simply and obvious questions.

37

Monty Hall
import random

doors = [1, 2, 3]

games = 1000

carsWon = 0

for n in range(games):

 carDoor = random.choice(doors)

 playerDoor = random.choice(doors)

 # The host opens a different door to reveal a goat

 # (always able to do this as there are 2 goats).

 montyDoor = random.choice(list(set(doors) - set([carDoor, playerDoor])))

 # ~~~~ To stick, just comment out the next line –

 # it implements that the player is swapping doors.

 playerDoor = list(set(doors) - set([playerDoor, montyDoor]))[0]

if playerDoor == carDoor:

 carsWon += 1

print('The player won the car ' +

 str(round(carsWon / (games / 100))) +

 '% percent of the time')

Some attendees will be familiar with R (https://www.r-project.org).

An example of the equivalent R code to solve the problem, complete with an
explanation, may be found here:

https://bookdown.org/danbarch/psy_207_advanced_stats_I/markov-chain-monte-
carlo-methods.html#lets-make-a-deal

38

See cslab.com/monty for more.

92% of Americans weren't as smart as Marilyn.

39

Individual or Group Problem Solving

40

Real-time Problem
 Modify the 3n + 1 code:

 If we didn't break out of the loop when we
get to 1, we would loop endlessly over 4,
2, 1.

Alter your code to use a Python set to
detect that we've previously seen an
output, and break out of your loop when
that's seen.

 Can you find other (hailstone) sequences
by altering the algorithm slightly, i.e.,
those not terminating in 4, 2, 1? Hint,
you'll need to start with negative starting
values and look no further than, say, -20.

Can you do this programmatically (test a
range of inputs consecutively in an outer
loop)?

 Use a list comprehension to create a list
of the squares of the integers 1 – 10
inclusive.
 Then; a bit more complex – use enumerate()

to build a list of two-element lists – the
thing being squared, and the squared result,
e.g.,

[[1, 1], # First enumeration, 12 is 1
 [2, 4], # Second enumeration 22 is 4.
 [3, 9], # ...
 [4, 16],
 [5, 25],
 [6, 36],
 [7, 49],
 [8, 64],
 [9, 81],
 [10, 100]]

n = abs(int(input('Enter a positive whole number: ')))

loops = 0

s = set() # s is an empty set.

while True: # infinite loop.

print(n)

is n found in set s? If yes, we're done. Break out of loop.
if n in s:

break

s.add(n) # Not seen n previously, so add n as a member of s.

if n is odd, its least significant bit is set, n & 1 will be 1.
#
if n & 1:

n = n * 3 + 1
else:

n = n // 2

print(f'Loops: {loops}') # An 'f-string'.

41

Real-time Problem
 Write the beginnings of a guessing game in which the program gives

hints to the user. 'Pick a number between say, 1 and 10. Count how
many guesses are required.

1 10

5

8

6

7

5 is too low

8 is too high

6 is too low

Answer

42

3n + 1 Problem (using a set)
n = int(input('Enter a whole integer value'))

s = set() # using a set.

while True:

 print(n)

 if n in s: # set membership test.

 break

 s.add(n) # here only if n not a member of set s.

 if n & 1: # n is Odd. Could also use if n % 2 == 1:

 n *= 3
 n += 1

 else: # n is Even.

 n //= 2

Set: an unordered collection of items, with no duplicates allowed.

43

import
Math module functions
 import math

 You can now access any math function by putting math. in front of
it:

 print(math.sqrt(5))


2.2360679774997898

 from math import *

 print(floor(log(255, 2) + 1))

8

A few math module functions (use dir(math) for entire list)

Name Description
ceil(x) Ceiling of x
cos(x) Cosine of x
degrees(x) Converts x from radians to

degrees
exp(x) e to the power of x
factorial(n) Calculates n! = 1*2*3*…*n

n must be an integer
log(x) Base e logarithm of x
log(x, b) Base b logarithm of x
pow(x, y) x to the power of y
radians(x) Converts x from degrees to

radians
sin(x) Sine of x
sqrt(x) Square root of x
tan(x) Tangent of x

If you want to know where a module lives, import it, and then use help() like this:

import random
help(random)

At the bottom of the output you'll see something like:

FILE
c:\program files\python310\lib\random.py

However, some modules are built in to the interpreter (over 60 currently). The math module is
like this. If you try the trick above on that you'll see:

FILE
(built-in)

If you want a full list of the available modules you have installed, use help('modules'). If you
want to know which are 'built in', import sys, then use print(sys.builtin_module_names).
Lastly, if you want to know where Python looks for non built-in modules, use import sys, then
print(sys.path)

def factorial(n):

 prod = 1

 for i in range(2, n + 1):

 prod *= i # same as prod = prod * i

 return prod

n = 100

result = factorial(n)

Functions
import math

n = 100

result = math.factorial(n)

A function is like a mini program: processing input and outputting a result.

So, they usually take one or more inputs, and usually return one or more results – but
they don't have to do either of those things if they don't want to.

def func(a, b):
return divmod(a, b) # return a // b and also a % b.

print(func(10, 3))

>>> func(10, 3)
(3, 1)

The arguments (that's the inputs) can take default values. def factorial(n = 10),
would allow us to call our function with empty parentheses, print(factorial());
with n defaulting to having the value 10.

You can read a bit more about argument options here:

https://www.programiz.com/python-programming/function-argument

45

def factorial(n):

 if n == 1:

 return 1

 else:

 return n * factorial(n - 1)

n = 100

result = factorial(n)

Functions
import math

n = 100

result = math.factorial(n)

This is the third and final way to repeat things. It's called recursion.

Here we can see that the factorial(n) function can, under certain circumstances,
call itself. In fact, it will always do so unless its input n has the value 1.

46

Recursion vs Iteration
def fibonacci(n):

 if n < 2:

 return n

 else:

 return fibonacci(n - 1) + fibonacci(n - 2)

n = 11

print([fibonacci(i) for i in range(n)])

def fibonacci(n):

 a = 1

 b = 1

 for _ in range(1, n):

 t = a

 a = b

 b = t + b

 return a

n = 11

print([fibonacci(n) for n in range(n)])

>>> 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

One has to be careful with recursion as it's easy to write very elegant, very slow code!

Here, the code on the left is very inefficient – try altering it by increasing values for n.
Go in small increments of 10. When it slows down, compare it to the code on the
right (speed).

The code on the left can be made to run just as fast as the code on the right by using
caching - to cache previously computed Fibonacci numbers (this is called
memorization).

Google for lru_cache(), and also have a look at @functools.cache here:

https://docs.python.org/3/library/functools.html

47

Recursion - fibonacci
import time

def fibonacci(n):

 if n < 2:

 return n

 else:

 return fibonacci(n - 1) + fibonacci(n - 2)

for n in [1, 5, 10, 15, 20, 25, 30, 35]: # Increase in small increments.

 t1 = time.perf_counter_ns() # Nano second timer.

 k = fibonacci(n)

 t2 = time.perf_counter_ns()

 print(f'Computing the {n}th fib number ({k}) took {t2 - t1:,} nano seconds')

O(2n)

In the code above we're using the library's time module to determine something
about our code's efficiency.

Copy, paste, and run the code.

You'll see that this doesn't 'scale' well with values of n. To fix this, either cache
previously seen n values using a dict(), or look-up dynamic programming and from
functools import lru_cache, and the decorator @lru_cache.

48

A bit more pythonic
def fibonacci(n):

 a, b = 1, 1

 for _ in range(1, n):

 a, b = b, a + b

 return a

print(fibonacci(10))

Pythonic means to use the special features of the Python language – rather than
using the usual way things might be done in another language, and then translating
that into Python code.

a, b = b, a + b might look a little unsafe, or at least a little suspect?

a is assigned the value of b, as in (a, _ = b, _), and b is assigned to a + b, as
in (_, b = _, a + b), but hold on, didn't we just change a, to b's value? So, in
assigning a + b to b, what value of a is being used – the one assigned to a, by a, _ =
b, _, or a's original value?

What actually happens here is that the right hand side is resolved first, and then the
relevant values are assigned in one step.

https://docs.python.org/3/reference/expressions.html#evaluation-order

49

Monty Hall
import random

doors = [1, 2, 3]

def playGame():

 carDoor = random.choice(doors)

 playerDoor = random.choice(doors)

 # The host opens a different door to reveal a goat

 # (always able to do this as there are 2 goats).

 hostDoor = random.choice(list(set(doors) - set([carDoor, playerDoor])))

 # ~~~~ To stick, just comment out the next line –

 # it implements that the player is swapping doors.

 playerDoor = (set(doors) - set([playerDoor, hostDoor])).pop()

 return True if playerDoor == carDoor else False

 carsWon = 0

 for games in range(1000):

 if playGame():

 carsWon += 1

 print('The player won the car ' +

 str(round(carsWon / (games / 100))) +

 '% percent of the time')

Using a function to play separate games of the Monty Hall problem.

50

Strings – immutable, ordered, indexed
s = 'hello world' # variable called s

print(len(s)) # number of characters in s. 11

s = s.title() # title case s, assign back to s

print(s) # 'Hello World'

print(s.find('o')) # o is 4th char from left starting from 0

print(s.rfind('o')) # different o in position 7

print(''.join(reversed(s))) # 'dlroW olleH'

print('Wo' in s) # True

n = s.find('World') # n is 6

print(s[n:]) # 'World'

print(s[0::2]) # 'HloWrd'

print(s[::-1]) # 'dlroW olleH'

s =

s[0] same as s[0:1]

s[1] same as s[1:2]

s[-4:-2] or s[1:3]

Strings and 'Slicing'

s[0] s[1] s[2] s[3] s[4]

h e l l o

s = 'hello'

s[start:xstop]

h

e

e l

The slicing syntax is:

inclusive-starting-position : exclusive-ending-position : step

If an ending position is negative, it counts from the right hand end. -1 would give an
exclusive ending position as the second to last character. E.g.,

print(s[0:-1]) outputs 'hell'.

A step of -1 reverses a string:

print(s[::-1]) outputs 'olleh'.

Slicing works on many other data types, not just strings.

See https://www.youtube.com/watch?v=ajrtAuDg3yw for more.

Class
import random

class dice():

 def __init__(self, sides = None):

 self.sides = 6 if sides is None else sides

 self.throws = [n for n in range(1, self.sides + 1)]

 def throw(self): # throw is a method of dice.

 return random.choice(self.throws)

d1 = dice(); d2 = dice(20)

print(d1.throw(), d2.throw())

We have seen that methods are bits of functionality that are built-in to objects, e.g.,
the find() method of a string:

s = "Hello World"
print(s.find("World")) # outputs 7.

Methods can define the operations that can be performed uniquely on certain object
types. E.g., you can only use find() on strings, so it makes sense to build it into
strings, rather than have it as a global function, like len(): len() can be used on
Tuples; Lists; Dictionaries and Strings.

In Python, we can create our own types, and also the unique operations that may be
applied to them.

Here, we are creating a dice type, which also contains the definition of what it
means to throw() a dice instance.

Here, dice objects may have any number of sides, but have 6 by default. The
possible thrown values are also defined as a dice object it is created.

53

Problem Work-Through

 Write a program to generate a
sequence of coin tosses. e.g.,
HTH.

 On average, how many coin-
tosses are needed to see a given
sequence?

Sequence Tosses
--
HTTTHHTTHHTTTTHTH 17
HHHTTTHHTTHHTH 14
HHHHTH 6
HHTH 4
HHHTTHHHTTTTHHTTHTH 19
HHTTHHHHHTTHHHTTHHHHTH 22
HTTHHHTH 8
TTHHTTTHTTTHTH 14
TTTHHTTTTTHTH 13
TTHTH 5
THTTHTH 7
HTH 3
THHTH 5
HHTTTTTHHHHHTTTHTH 18
HHHTH 5

Average # of tosses to see HTH was …

54

Package installation
(pip/pip3)

 Use pip to

 pip install numpy

and

 pip install matplotlib

 Used on the following
slide

pip –list will show you what packages you have currently installed.

55

import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
data_set = mu + sigma * np.random.randn(10000)

plt.hist(data_set, 125, density = 1, facecolor = 'g', alpha = 0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.text(60, .025, '$\mu=100, \sigma=15$')
plt.xlim(40, 160)
plt.ylim(0, 0.03)
plt.show()

Data Science Courses - https://www.linkedin.com/...

Copy the code below into a new module to test your installation

Use

pip –install numpy, matplotlib

in a command-prompt/terminal before copying/running the code above.

56

Homework
If HTT beats HTH, what if anything beats HTT? And does something beat that etc? Is
there an optimal sequence?

You can use this code to produce a list l of all the possible starting permutations:

import itertools

rep = 3

l = list(itertools.product('HT', repeat = rep))

for n in range(len(l)):

 l[n] = ''.join(l[n])

print(l, len(l))

It turns out that there is no best sequence.

See: https://en.wikipedia.org/wiki/Penney%27s_game

57

Homework

 Along with the slides from today,
and the coin tossing simulation and
other code, I am giving you the
code of a program that can access
and parse RSS feeds, in particular,
the BBC's.

 At the end of the code there are
some suggestions for modifying
the it.

58

Resources
 Real Python – Link

 Python Programming Tutorials – Link

 Linked-In Learning (of course!)

 Socratica Python - Link

 Anything Python by Corey Schafer - Link

 Any YouTube videos by Raymond Hettinger

 Pandas (Python Data Analysis Library) - Link

 A little more technical: Python as C++’s Limiting Case - Link

59

Resources – Me!

If you would like to book a one-to-one session with me,
please just email me to arrange a suitable date and time.

Always happy to help. And it's free.

60

Any final questions?

61

