
Hillary 2020

Introduction to Linux Hilary 2020

ARC Team Linux Commands January 30, 2020 1 / 42

Introduction to Linux

All of the current ARC systems run an operating system called Linux. Whereas
Microsoft Windows and Mac OS X place almost total emphasis on graphical interaction
with the operating system, Linux encourages users to do lots of things from the
”command line” or ”prompt”.

Working from a command line has many benefits, especially when dealing with multiple
files or performing complex operations on data, and once used to it, many users
complain how slow and painful using graphical systems can be.

it is different and many users find the learning curve off putting. Simple tutorials with
Linux will help you.

ARC Team Linux Commands January 30, 2020 2 / 42

Purpose of this tutorial

To help users of the University of Oxford Advanced Research Computing facility to gain
sufficient basic Linux knowledge and skills to be able to utilise our services.

We also recommend that after this you next attend the HPC: Introduction to the
Advanced Research Computing service course.

ARC Team Linux Commands January 30, 2020 3 / 42

Command line

ouit0578@login12(arcus-b)$ is an example of a linux prompt.

commands can only be entered once we have the prompt.

all commands give us an output, correct commands give us a response, wrong commands
give us : command not found”

ARC Team Linux Commands January 30, 2020 4 / 42

Most basic commands

Command Meaning

ls content of current working directory
cd directoryname Change directory

passwd Change password for my user name
file and filename Display file type ...

cat textfile Shows content of text file
pwd print [current] working directory

exit or logout End this session
man and command Read manual pages about command
info and command Rea info pages on command

apropos string the whatis database

ARC Team Linux Commands January 30, 2020 5 / 42

Operating System

On a computer the operating system is the program that relays instructions to the various
parts of the computer and makes sure that they are carried out.The operating system turns
those instructions into something the computer can understand. Computer Instructions are
sent

from user typing commands at the command line

from an application such as the program you run to perform your research

from a graphical user interface

ARC Team Linux Commands January 30, 2020 6 / 42

The Linux File System

The Linux operating system is built around the concept of a filesystem. This stores not only
the operating system itself, it in fact stores everything for the whole system including your
data and program files, files for commands, system and software configuration information,
temporary workfiles, and various special files that are used to give controlled access to
system hardware and operating system functions.

ARC Team Linux Commands January 30, 2020 7 / 42

Linux characteristics

Linux is case sensitive – In almost all circumstances a and A are considered to be
different. ’ls’ is a standard Linux command, while LS is not and abc.dat is a
different file from Abc.Dat.

There are four types of files in a Linux filesystem: Files, Directories, Devices, Links.

ARC Team Linux Commands January 30, 2020 8 / 42

Linux File Types

Files: contain text, data, or program information. Filenames can contain any character
except for ’/’ and be up to 256 characters long. However we strongly suggest you avoid
characters such as #,$,as they have special meaning in Linux. Putting spaces in
filenames also makes them difficult to manipulate, use the underscore instead.

Directories containers that hold files, and other directories. These are an almost direct
equivalent for Windows folders.

Devices: To provide applications with easy access to hardware devices, Linux allows
them to be used like ordinary files. There are two types of devices in Linux -
block-oriented devices which transfer data in blocks (e.g. hard disks) and
character-oriented devices that transfer data on a byte- by-byte basis

Link: a pointer to another file. There are two types of links - a hard link to a file is
indistinguishable from the file itself. soft link (or symbolic link) provides an indirect
pointer to a file.

ARC Team Linux Commands January 30, 2020 9 / 42

Linux Directory Structure

The directory structure in Linux is a tree like structure with the so called “root” directory
at the bottom, with other directories branching off it.

ARC Team Linux Commands January 30, 2020 10 / 42

Basic Directory and File handling commands

To use the system we open up a terminal or log into an ARC account. At the prompt if we
type pwd (print working directory) we see the full absolute path to your current location in
the filesystem. for example /home/ouit0578 or /home/teaching01

ARC Team Linux Commands January 30, 2020 11 / 42

Basic Directory and File handling commands

list directory ls lists the contents of a directory. If we don’t specify a directory, then the
contents of the current working directory are displayed.

list all files including files and directories that begin with a dot and are hidden ls -la : ls
doesn’t show all the entries in a directory, files beginning with a dot usually contain
configuration information and should not be changed under normal circumstances. If we
want to see all files, ls supports the –a (for all) option or “flag”: ls -la

ARC Team Linux Commands January 30, 2020 12 / 42

Basic Directory and File handling commands

A lot of information here! At this stage the most important are the name of the file, the date
it was last modified, and its size in bytes. For completeness the rest are type : a single
character ’d’ (directory), ’-’ (ordinary file), ’l’ (symbolic link), ’b’ (block device) or ’c’
(character device) and then we have Permissions.

ARC Team Linux Commands January 30, 2020 13 / 42

File Permissions

There are 9 permission characters, describing 3 access types given to 3 user categories.

The 3 users categories are the user who owns the file, users in the group that the file
belongs to and other users (the general public).

The three access types are read (’r’), write (’w’) and execute (’x’). An ’r’, ’w’ or
’x’ character means the corresponding permission is present; a ’-’ means it is absent.
Links refers to the number of filesystem links pointing to the file/directory

Owner is usually the user who created the file or directory.

Group: a collection of users allowed to access the file according to the group access
rights specified in the permissions field. On ARC machines all members of a project are
in one group.

Other means all user who can login to ARC systems

ARC Team Linux Commands January 30, 2020 14 / 42

File Permissions continued

size is the length of a file, or the number of bytes used by the operating system to store
the list of files in a directory

date is the date when the file or directory was last modified. The -u option display the
time when the file was last accessed (read). name is the name of the file or directory.

We should also mention ’sticky bit’ a permission bit that is set on a file or a directory that
lets only the owner of the file/directory or the root user to delete or rename the file, it
appears as s or t.

ARC Team Linux Commands January 30, 2020 15 / 42

More on ls

ls (like many Linux commands) has many more flags, type ‘man ls’ or ‘info ls’ to see the
options – this also tells use the standard Linux help commands. When using info
pressing space means display the next page, and q means quit to the command prompt.

when you first login to your user id you will not have many files in your directory! A
simple way to create a file is the touch command, which will create a new file if one with
the given name does not exist.

touch my.txt. We can use ls -l to find out how big the file is.

touch change the time stamp of a file. If we touch the file for a second (or third,
fourth...) we will see with ls -l the time changing.

touch is not actually that useful for creating files, we’ll see better ways soon!

ARC Team Linux Commands January 30, 2020 16 / 42

Create and change directories

We create a new directory within mydata called results and change into it, and use pwd
again. Commands relating to directories

mkdir mydata and we use ls to find out what has happened.

cd is the change directory command

pwd displays current directory

ARC Team Linux Commands January 30, 2020 17 / 42

Copy and move

Copy a file cp and mv and move, (i.e. rename, a file). First we make sure we are in the
right directory and we have the correct permissions using ls -l or ls -la then use the
following command :

To copy : cp my.txt myold.txt Now try the command mv myold.txt
myveryold.txt. Using ls can we can show the difference between what cp and mv do.
With mv the original file is no longer there.

To delete a file use rm. BEWARE! By default Linux won’t ask if we want to do this, it
will just do it. Thus to get rid of the file rm myveryold.txt we always use ls to see
what has happened. Experienced command line users prefer not being asked, however if
we want to be careful we can use the –i flag to rm which will ask if the user wants to
remove the file: rm -i myfile remove ‘myfile’.

By default rm won’t remove a directory, use rmdir command which will, but only as long
as the directory is empty.

To delete a directory and its contents use rm -r directoryname

ARC Team Linux Commands January 30, 2020 18 / 42

Summary so far and Editors

Now you should understand how

how the filesystem is structured

how to move about in it

some of the most common file manipulation commands. We don’t yet know how to give
the files any content.

The most common way to give a file content is to use an editor – a special program that
allows us to type into a file, and change a file’s contents.

There are many linux editors (e.g. emacs, gedit, nano). Here we will illustrate use of a
fairly simple one, nano. Others are broadly similar but the details will vary how the
filesystem is structured how to move about in it.

ARC Team Linux Commands January 30, 2020 19 / 42

Editor Nano

We would start editing by typing : nano my.txt. If the file does not exist it will be created.
You would then see a screen like the image below which displays the file’s contents (currently
nothing).

ARC Team Linux Commands January 30, 2020 20 / 42

More on editor nano

You can then hit Ctrl+G to bring up the Help documentation and scroll down to see a list of
valid shortcuts.

We use nano to provide some contents for the file my.txt in my home directory and save the
changes. If we want to see how big is this file we use $ls –l to find out.

ARC Team Linux Commands January 30, 2020 21 / 42

More Commands

Now we can make files with contents it would be nice to display them at the command line
without having to open nano every time. Two useful commands to do this

To just display the file “as is” we use cat. Later we can create a file and try cat my.txt.
cat is good for short files

If we use cat for files that take more than one screen to display, the top will disappear
probably before we can read it! Command less will let us see content one page at a
time. See how less my.txt works. To quit any of these commands use q, it will take me
to the command prompt, just as it did for info.

To show the top and the bottom of the given file respectively we use head and tail.

ARC Team Linux Commands January 30, 2020 22 / 42

Command Line Short Cuts

You will have noticed now that often we repeat very similar commands and it would be useful
to be able to repeat, or slightly change, previous commands without having to retype them.

Hitting the up arrow will display the command we just used.

Using the left and right keys, we can move around in the command change it as
required.

Hitting the up arrow again will go back one further command. You have a complete
history of your commands which is searchable an editable.

ARC Team Linux Commands January 30, 2020 23 / 42

list of useful short cuts at the command line

ARC Team Linux Commands January 30, 2020 24 / 42

More shortcuts at the Command line

If we want to change into a directory with a very long name, we don’t need to type that
long name, on the command line, we use Tab: cd dir (first 3 letters of your long name),
then we press Tab and the shell completes the name provided no other files starts with
the same three characters.

If there are no other items starting with ”d”, then we can just type cd d and then Tab.
If more than one file starts with the same characters, the shell will signal this, upon
which we can hit Tab choice. This refers to hitting Tab twice with short interval, and
the shell presents the choices we have.

we have 3 directories starting with the same letters: gnome-run1 gnomics gno-test if we
use ’cd gno’ after the first three characters and hit Tab, the shell completes the
directory name, showing all 3 options. If we add an m and hit tab again we will get
gnome-run1 gnomics as these are the only 2 of the 3 that now match what we have at
the command line.

ARC Team Linux Commands January 30, 2020 25 / 42

Using ARC system

At this point we have reached a stage whereyou should have enough knowledge to do most of
your work on ARC systems! However there are a few other topics which, while not absolutely
necessary, can be useful to aware of, especially redirection which we consider below. These
begin to illustrate the power of the command line for complex operations on multiple files.

ARC Team Linux Commands January 30, 2020 26 / 42

Specifying Multiple Files and Wildcards

So far we have worked with one file at a time. However Linux allows us to work with many
files at once, and many commands can be applied to multiple files at once.

character replacement: it is boring to have to type out all these file names. Instead we
can look for multiple filenames using special pattern-matching characters, often called
wildcards.

use simple rules ’?’ matches any single character in that position in the filename; ’*’
matches zero or more characters in the filename; a ’*’ on its own will match all files;
’*.*’matches all files containing a ’.’; characters enclosed in square brackets (’[’ and ’]’)
will match any filename that has one of those characters in that position.

ARC Team Linux Commands January 30, 2020 27 / 42

Specifying Multiple Files and Wildcards- Examples

ls ??? shows all the files in the current directory that have exactly 3 characters in their
name .

ls ?ell? matches any five-character filenames with ’ell’ in the middle. or he* matches any
filename beginning with ’he’, e.g. hello, help, heterogeneous but NOT Henrietta -
Remember Linux is case sensitive!

ls [m-z]*[a-l] matches any filename that begins with a letter from ’m’ to ’z’ and ends in a
letter from ’a’ to ’l’. Thus [Hh]e* matches all of hello, help, heterogeneous and
Henrietta. Note that the Linux shell performs these expansions (including any filename
matching) on a command’s arguments before the command is executed

ARC Team Linux Commands January 30, 2020 28 / 42

Quoting

A number of special characters (e.g. *,,$..) are interpreted in a special way by the shell. In
order to pass arguments that use these characters to commands directly (i.e. without the
filename expansion we have just seen etc.), Linux uses special quoting characters which forces
them to be interpreted as-is rather than in any special way. There are three forms of quoting:

inserting a \in front of the special character.

using double quotes ” around arguments to prevent most expansions.

using single forward quotes ’ around arguments to prevent all expansions. In the
directory with 1.txt we try the commands: ls *.txt and ls ”*.txt”

There is a fourth type of quoting in Linux. Single backward quotes ‘ are used to pass the
output of a command as an input argument to another.

ARC Team Linux Commands January 30, 2020 29 / 42

Finding Files

If I don’t know the exact location of a file there are ways of finding it using the find
command. find directory –name filename -print . find will look for a file called filename
any part of the directory tree rooted at directory.

find . -name ”*.txt” -print . This will search all user directories for any file ending in
”.txt” and output any matching files (with a full absolute or relative path). Here the
quotes (”) are necessary to avoid filename expansion

find can in fact do a lot more than just find files by name, as usual man find will
provide information. A particularly useful form of this is find . –name ”*.txt” –print.
Note the period (.) after the find command – this is Linux shorthand for the current
directory. Thus this will find all files ending in .txt in the current directory and all
directories underneath it.

ARC Team Linux Commands January 30, 2020 30 / 42

Finding text in Files

The command grep (general regular expression print) searches files for lines that match a
given pattern (the technical term for here is “regular expression”). For example

We create a file start.txt and enter the words Twinkle, Twinkle star and twinkle

The command grep Twinkle star.txt will print out all lines that contain the text
Twinkle (but not twinkle - remember Linux is case sensitive) in the file star.txt.

We have created a text file using nano and want to find a way so that grep does find all
lines with both Twinkle and twinkle? .

We use man grep and find that grep -i twinkle will ignore case distinctions

Let’s say we want to find every shell script (for us a file whose name ends in .sh) below
the current directory that contains the text SBATCH. We use grep SBATCH ‘find .
-name ”*.sh” -print‘.This searches all shell script files in the directory tree below the
current directory for lines containing ”SBATCH”.

ARC Team Linux Commands January 30, 2020 31 / 42

Sorting , redirecting Files

The command sort sorts lines contained in a group of files alphabetically (or
numerically if the -n flag is specified) numerically. To outputs the sorted concatenation
of files input1.txt and input2.txt use sort file1.txt file2.txt.

redirect - Our commands are getting increasingly complex. Sometimes it would be nice
if we could save the output to a file. Technically every command writes its output to
something called Standard Output. By default standard output in our terminal is going
to the terminal. It is possible to change this so that standard output goes to a file
instead of the display by use of the >character.

ARC Team Linux Commands January 30, 2020 32 / 42

Redirecting Input and Output

We use echo to display line of text/string that are passed as an argument will write
Hello to the screen.

To write the word Hello to a file called hello.txt we use echo ”Hello” >hello.txt . Be
a little careful as if hello.txt already existed it would overwrite it, and as we are using
Linux we will get no warning.

We can overwrite or add text echo ”Bye” >hello.txt. What are the contents of the
file now? If we want to avoid this use >>to append to a file.

To take the input from Standard In, which is the keyboard echo ”Hello again”
hello.txt .

ARC Team Linux Commands January 30, 2020 33 / 42

More on Redirecting

To redirect this as an input use >. This will cause a command to read its input from a given
file. Redirection is especially important when we run our jobs in Batch mode, which is the
main way of using the ARC systems, and the main topic you will learn about in the
Introduction to ARC Service course.In such systems we will find programs are running in a
way that does NOT allow us to type commands into it, and we are not always connected to a
screen. In this case I/O redirection may be the only way to allow your program to read its
input!

ARC Team Linux Commands January 30, 2020 34 / 42

Pipes

We saw how to redirect the output of one command into a file. It is also often very useful to
redirect the output so that it acts as the input

To see example of a pipeline we will try: ”cat listfile |sort |uniq”

We create this list file as a list of 10 names, some duplicated.

We can use cat and sort to generate a sorted list of unique names in the file

output of the command goes to the standard output.

We can save the output of the sort command. Note the difference between >and <, the
former redirects standard output of a command to a file, the pipe redirects the standard
output of one command to the standard input of another command.

Sort: we know sorts its standard input into alphabetic order and writes that to standard
output. This output, because of the second pipe, acts as the input for the uniq
command.

uniq This is a new one – it removes all neighbouring duplicate lines in a file, and thus
gives us our desired result.

ARC Team Linux Commands January 30, 2020 35 / 42

Copying files - creating tar files

tar backs up entire directory structures and files into a single archive file. tar -cvf
archivename listoffiles to be archived where archive name will usually have a .tar
extension.

example tar –cvf myfiles.tar will create a file called myfiles.tar that contains all files in
the current directory and all directories below it (note the . at the end, do you
remember what this means in Linux?) In the above c=create,v=verbose (output
filenames as they are archived), and f=file.

To list the contents of a tar archive, we can use the tabulate option: tar -tvf archivename

To extract files from a tar archive, use: tar -xvf archivename This can be very useful
for transferring many files between machine – use tar to create a single file containing
everything we want, transfer that single file, and then extract it on the remote machine.
Note we will want to do this on ARC as any files that are not used for 6 months are
under threat of deletion!

ARC Team Linux Commands January 30, 2020 36 / 42

File compression

Tar files can get very big and so can take a long time to transfer, in which case a compression
utility like gzip can be very useful.

To compress files, use:gzip filename

To reverse the compression process, i.e. once on the home machine, we use:gunzip -d
filename

ARC Team Linux Commands January 30, 2020 37 / 42

Shells and Shell scripts

So far everything would have been typed everything into a terminal. However we can store
commands in a file and then run that file, effectively generating a new Linux command from
the operations given in the file. This is called a shell script, a shell being the base
interpreter that is sorting out what all the commands we use actually mean. Technically we
have been using the bash shell, but there others. However at this level it makes little
difference which one we use. Note the following when storing commands in a file

1. How to give execute permission to the file

2. How to run the file

3. How to make sure the commands in the file are interpreted as we want them to be.

ARC Team Linux Commands January 30, 2020 38 / 42

More on Shells and Shell scripts

1. For executable files we need Execute permission . We revise the output generated
by ls –l above each file has a set of permissions. One of these permissions tell us if the
file can be executed or run. By default files cannot be run under Linux, this protects us
against accidentally running something which shouldn’t be, or worse running something
maliciously installed on your system. However as we want to run our file we need to add
the execute permission. You do this via ’chmod +x filename’ which modifies a file called
¡filename¿ to have execute permission.

2.To run a file: the simplest way is to be in the same directory and then type
./filename. This means try to run a file called filename in the current directory –
remember what . in Linux means. To know more about this we have to look at the
PATH environment variable which is touched on in one of the questions below, but to
get started this simple recipe will do.

3.To make sure that the script is interpreted by the bash shell we should put
#!/bin/bash as the very first line in the shell script. This sets the so called magic
number for the script, and ensures that bash is used to interpret it, see
https://stackoverflow.com/questions/8967902/why-do-you-need-to-put-bin-bash-at-the-
beginning-of-a-script-file for more
details.

ARC Team Linux Commands January 30, 2020 39 / 42

Example of Shells and Shell scripts

Simple examples of a shell script

ARC Team Linux Commands January 30, 2020 40 / 42

Example of Shell Programming

Example of a slightly more complicated Example.

ARC Team Linux Commands January 30, 2020 41 / 42

More Advanced Shell Programming

Here we very briefly mention a few more of the facilities provided by the Linux shell – don’t
worry if you don’t understand them, none of the below is required to be a competent user of
the ARC service, though some knowledge, especially of variables, may well be useful.

ARC Team Linux Commands January 30, 2020 42 / 42

