
Welcome to the IT Learning Centre

You are in the right place …

We’ll be starting soon

Dr. Nazrul Islam

nazrul.islam@ndph.ox.ac.uk

R: Hands-on with data analysis

Dr. Christiana Kartsonaki

christiana.kartsonaki@dph.ox.ac.uk

Ready To Learn?

Today’s session takes place in a video-call using Teams

Can you see and hear the teacher?

Please tell us if anything doesn’t work.

Please don’t plan to multi-task.
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Today’s resources

How will you display your workbook?

Where are your course files?

Is the software installed?

Acknowledgement:
Helen Lockstone, Ben Wright
Dave Baker, Quentin Ferry

Resources for your learning

Activities for you to practice today
In the course handbook
Work at your own pace!
Be selective

Videos with today’s topics in Molly

Follow-up work
Continue with exercises after the session

Aims of today’s workshop 

 An introduction to how you interact with and use R

 A sense of R’s capabilities and how it works

 Explain some programming jargon and concepts, and the R language

 Awareness of the vital importance of good programming practice

 Use R to run some typical tasks
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 Incredibly powerful and versatile statistical programming software....but 
where do I start?

 Features that make life easier in many ways....but potential pitfalls as well

 Open-source, free software with a strong support and development 
community 

 Extensive additional functionality for Genomics data through the 
Bioconductor project (https://www.bioconductor.org/)

R – Strengths and Weaknesses 

To harness its capabilities, an R user needs to be able to do all of the 
following: 

1. Program instructions in the R language 

2. Understand R’s data structures, functions and behaviour

3. Use appropriate statistical tests and models for their data 

4. Interpret the output correctly 

Course format: informal workshop-style - please feel free to ask questions at any time.

Course Overview

About you

1. I am using R for the first time today. 

2. I tried using R but didn’t get very far before I ran into something I didn’t 
understand or a problem I couldn’t resolve. 

3. I’ve used R quite a bit, but sometimes it does unexpected things and I am 
not sure why. 

4. I’ve started using R and thought ‘Wow, this is wonderful – how easy and 
intuitive it is to use!’ Anyone??
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About us

Today’s plan

 Introducing the R environment, basic commands and data types

 Understanding variables, functions and arguments 

 Tea/coffee break

 Setting the working directory, reading in and accessing data 

 Performing simple data analysis and plotting

Getting Started with R
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Find the resources for the workshop 
in our IT Learning Portfolio

Download the files (and more) from the IT 
Learning Portfolio at

skills.it.ox.ac.uk/it-learning-portfolio

Introductory remarks

• Understanding how to interact with R is vital to avoid mistakes in data 
analysis

• It is important to inspect data and regularly check and plot data objects

• Always read the help file before using a R function, e.g., ?plot

RStudio

• An interactive interface that makes 
working with R easier

• Freely available (www.rstudio.com)
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RStudio

Console to enter/run R commands

RStudio

File with R code

RStudio

R objects in workspace

Can click to open on top left 
panel
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RStudio

Plots

Help

Files

Packages

Viewer

R basics: the R environment

R is a very interactive environment

• Commands can be entered directly in the console and each executed in real 
time

• It is good practice to have a file with R code from which to run commands

• And to use comments to remember what your code does # This is a 
comment

R basics: the R environment

• Depending on the command, different things may happen – a new object 
may be created, output may be displayed, computations performed, plots 
displayed etc.

• If a command is not valid in the way it is constructed (its syntax), R will print 
an error message in the console. Error messages may be difficult to 
interpret, but common culprits are simple typing mistakes, quotes or 
brackets (e.g. in the wrong place, missing, not in pairs).

We will start by entering a few simple commands and discuss what is 
happening.
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R basics: notation

Commands are shown including the prompt sign > but this appears by default 
in the R console and you don’t need to type it.

For example
> x <- 5

should be entered at the command line as
x <- 5

An extra > will give an error:
>> x <- 5
Error: unexpected ‘>’ in “>”

R basics: command line

Try typing a command, e.g. 1 + 2 and pressing the return key:
> 1 + 2
[1] 3
>

The output of this command (shown in red) is printed in the console and then 
the command prompt appears again.

Elements of the output are indexed by numbers in square brackets (in this case 
there is only one but sometimes longer lists or elements are returned).

R basics: command line

• Some commands do not produce any output

• After executing the line of code, the prompt appears again

• It is important to know what each command has done and check if it was as 
intended

• The new prompt tells you that R is ready for you to enter another 
command
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R basics: data structures

R uses objects to hold data and perform various operations on them

Basic variable types in R: 
• integer 
• numeric (double) 
• character (string) 
• logical (TRUE/FALSE) 
• factor (categorical) [also ordered factor]

R basics: data structures

R object classes:

• vector 
• data frame 
• matrix 
• list 
• table 
• array 
• ... 

R basics: assignment

Create an object named ‘x’ and assign to it the value 1:
> x <- 1

The assignment operator is <- and running this command creates a new 
object in R’s memory.

Inspect the contents of the new object:
> x
[1] 1
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R basics: assignment

The contents of an object will be overwritten if later a new value is assigned to it:
> x <- 4
> x
[1] 4

We can perform operations directly on the object:
> x * 2
[1] 8

The value of the object does not change unless we re-assign the output to it:
> x <- x * 2

R basics: naming objects

- R is case sensitive; so, x and X are different.

- Informative names (e.g., raw_data); no spaces.

- Elsewhere, R ignores whitespaces:

R basics: command syntax

- Creating a vector, and assigning values to it.

- Forgot the closing bracket?

- Can’t continue? Press Esc to continue.

- Command recall with  or
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Data types and structures in R

R basics: objects

R basics: creating vectors

R functions: c, seq
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R basics: vectors

- Vectors: one-dimensional objects.

R functions: length, class

Accessing elements of an object

R basics: object class

R functions: class, mean
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R basics: object class

R basics: the working directory

This presentation is made available by 
Christiana Kartsonaki and Nazrul Islam
under a Creative Commons licence:

Attribution-NonCommercial-ShareAlike
CC BY-NC-SA

nazrul.islam@ndph.ox.ac.uk
christiana.kartsonaki@dph.ox.ac.uk
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The small print 

Prerequisites 
Time in the workshop is precious – it is an opportunity for you to interact with the workshop leader 
and other participants through questions and discussions and to share your experiences and 
concerns. To make the most of this time we sometimes ask you to carry out learning activities ahead 
of the workshop so that everyone comes into the class with the same basic knowledge. We keep this 
prior learning to a minimum and often make use of online videos. Online videos provided through 
‘Molly’ can be accessed by University members anytime, anywhere, through a browser or app. 

Your course booking will tell you if any prior learning activity is required. If you don’t have an 
environment where you can do this learning, you can come along to one of our ‘quiet’ sessions. 
These are scheduled every week in normal term-time, and are a quiet space where you can work 
through ‘Molly’ videos or other workshop resources. 

If you arrive for a workshop without having done the prior learning, the workshop leader may 
suggest that you come back on another session.  

Copyright 
Christiana Kartsonaki and Nazrul Islam make this booklet and the accompanying slides available 
under a Creative Commons licence (BY-NC-SA: Attribution-NonCommercial-ShareAlike). 

The Oxford University crest and logo and IT Services logo are copyright of the University of Oxford 
and may only be used by members of the University in accordance with the University’s branding 
guidelines. 

The tutorial that follows is in part adapted from the Software Carpentry Foundation 
(https://software-carpentry.org/lessons/) Programming with R, specifically the Analysing Patient 
Data tutorial: http://swcarpentry.github.io/r-novice-inflammation/01-starting-with-data/index.html 
The Software Carpentry material is available for re-use under a Creative Commons License and we 
are grateful to the original authors. https://creativecommons.org/licenses/by/4.0/ 

This document and a variety of extensions to the tutorial material were written and developed by 
Helen Lockstone, with contributions from Ben Wright. 

About the teachers 
Christiana Kartsonaki is a Senior Statistician at the University of Oxford. She studied mathematics and 
statistics and has been working on biomedical statistics and epidemiology for over ten years, mainly 
on cancer. 

Nazrul Islam, a Physician-Epidemiologist, is a Research Fellow is Medical Statistics at the University of 
Oxford. He was trained in Epidemiology and Biostatistics at Harvard University and the University of 
British Columbia (UBC). He previously taught Epidemiology and Statistics at UBC and the University of 
Cambridge. He has been working on health data analysis for more than ten years. He is also a 
Research Editor for the British Medical Journal (BMJ).  

Revision history 
Version Date Author Comments 

1.0  Helen Lockstone 
Ben Wright 

Created 

2.0 October 2020 Nazrul Islam 
Christiana Kartsonaki 

Revised for online 
teaching 



  

 

About this workshop 

This workshop helps you to get introductory hands-on experience with data analysis using R 
statistical software. 

What you will learn 
We will discuss some fundamental concepts of data and R programming to help you develop a solid 
understanding of the basics of data and programming. 

In the Practical session, we will apply these concepts on real-life data to have a hands-on experience 
of data analysis. We will also discuss some technical aspects of data structure, exploratory data 
analysis including plotting, and some basics of data management. 

What you need to know 
We will not assume any previous knowledge of R. However you will need a general confidence with 
using your computer, navigating files and browsing the internet. 

The resources you need 
For today’s session you need a laptop with basic installation of the R software and the RStudio 
interface.  

The resources for most workshops, including any pre-course activity, are in the IT Learning Portfolio: 
visit skills.it.ox.ac.uk/it-learning-portfolio and search for “R activity”. 

 

 



  

 

Learning Objectives 

This workshop has the following learning objectives: 

Learning Objective One - Reading in data from a file 

Learning Objective Two - Two-dimensional data structures 

Learning Objective Three - Accessing Data 

Learning Objective Four - Analysing Data 

Learning Objective Five - Plotting Data 

Learning Objective Six - Data Handling 

  



  

 

Practical Tutorial 

Earlier we introduced the R software environment, some key features of the R programming 
language and how to start using it. We will now do some practical exercises working with 
example data to perform typical tasks. First, some important acknowledgements: 

The tutorial that follows is in part adapted from the Software Carpentry Foundation 
(https://software-carpentry.org/lessons/) Programming with R, specifically the Analysing 
Patient Data tutorial: http://swcarpentry.github.io/r-novice-inflammation/01-starting-with-
data/index.html The Software Carpentry material is available for re-use under a Creative 
Commons License and we are grateful to the original authors. 
https://creativecommons.org/licenses/by/4.0/ 

This document and a variety of extensions to the tutorial material were written and developed 
by Helen Lockstone, with contributions from Ben Wright. 

 

You can copy and paste any particularly long commands. Generally, manually type in the 
shorter commands to get used to the R environment and structure of commands – most are 
very short. Commands are shown within light-grey boxes; remember that lines starting with 
a # are comments and do not need to be run. 

Setup 

We set up our R session for this practical before the break. You can check which is the current 
working directory with the following command: 

getwd() 

The output (directory path) should match the location you are working in today, and this folder 
should also contain the files named “inflammation_data.csv” and “sample.csv”. 

If this is the case, you should have everything you need to run this tutorial. If not, please let us 
know and we will get you started. 

If you see an error message at any point, first check the command matches that in the tutorial 
exactly and that you haven’t accidentally missed an earlier command out. Pay particular 
attention to lower/upper case letters, underscores, dashes or dots in function or object names, 
and that brackets and quotes are correctly paired. If you can’t spot the problem or have a 
question at any point, please don’t hesitate to ask. 

Helpful Tips 

• Enter your commands in the top-left panel of RStudio (a text editor) as this means they can be 
saved to keep a record of what you have done. To run a command written in this panel, make sure 
the cursor is located somewhere in the line of code and click the Run icon with the green arrow. 
The command is automatically copied into the lower console panel and executed by R. 

• To save your work, click on the disk icon in the same toolbar as the ‘run’ button. Giving a filename 
with a .R extension, such as ‘R_course_code.R’ saves it as an R script file - this can be opened like 
any text file but the .R extension is useful to identify your files that contain scripts. This is the 
usually the easiest way to work; if you need to close your session and return to it another time, it is 
easy to run the code again. If it were appropriate, all of the code stored in a script can be executed 
in R from start to finish with the command 

https://software-carpentry.org/lessons/
http://swcarpentry.github.io/r-novice-inflammation/01-starting-with-data/index.html
http://swcarpentry.github.io/r-novice-inflammation/01-starting-with-data/index.html
https://creativecommons.org/licenses/by/4.0/


  

 

source("script_name.R") 

• The # symbol is the comment character in R – lines in a script starting with a # (or more commonly 
##) can include comments about what the code is doing. It is strongly recommended to comment 
your code as much as possible because it will help others understand what it is doing, including 
yourself if you revisit it sometime after originally working on it. A # can also be used after a 
command to note any result or information relating to that command – everything after the # will 
be ignored by R but serve as useful information to the programmer. You can also use long lines of # 
symbols to break your code into sections. 

• In the console panel, you can use the up/down arrow keys to scroll through previous commands to 
re-run or edit them easily if needed. RStudio also has features to help auto-complete names of 
functions and objects, and pairing brackets and quotes. 



  

 

Learning Objective One - Reading in data from a file 

The first thing we need to do is load or read in the data from our files so it is accessible in the 
current R session. There are a few possible ways to do this but we will use the function read.csv 
because our files are saved in ‘comma-separated values’ or csv format. To find out details of 
how to use this function you can search RStudio’s Help menu (bottom right panel) or type: 

help(read.csv) 

The help page shows us the arguments for this function and their default values where 
applicable. For example, we see sep = ”,”, which means the fields in a row will be separated on 
commas, and header = TRUE, which means it is expecting the first row of the file to contain 
names for each column. 

The first file we will work with is the one named ‘inflammation_data.csv’. If we inspect this file 
in Excel or a text editor (by opening it directly from its location on your computer) we see there 
are no column names, just a large set of numerical values. 

Therefore, we need to explicitly include the header argument in our command, changing it to 
FALSE to over-ride the default behaviour of the function. This is an example of how arguments 
modify a function’s precise behaviour, rather than requiring two separate functions to exist for 
files with/without header rows. 

inf.data <- read.csv("inflammation_data.csv", header=FALSE) 

Note: if you see an error message similar to ‘No such file or directory’ when trying to read in a 
file, it is likely that either (i) the file is not located in the current working directory; (ii) there is 
one (or more) typos in the filename. 

It is worth breaking this command apart to refresh on some of the terminology used this 
morning, as it can be hard at first to differentiate object names (decided by us) from R functions 
(pre-defined in the language) when looking at R code or commands. 

We have given a name for a new object, inf.data, in which to store the contents of the file 
‘inflammation_data.csv’. Our object name is descriptive without being too long, shortening 
‘inflammation’ to ‘inf’ for our convenience. We are using the in-built R function read.csv, and 
provide two arguments: 

• the name of the file to read in 

• header=FALSE, indicating to R that our file does not have a header row 

There are many other arguments to the read.csv function to further refine its behaviour but 
these are either optional or the default settings are fine for most situations. By running this 
command, R creates the object inf.data and information about it appears in the top-right panel 
of RStudio. It is detailed as 60 obs. (observations) of 40 variables and if you hover the mouse 
pointer over the name, inf.data, it indicates that the object is a data frame. Finally by clicking 
the spreadsheet icon to the righthand side, the contents of the object are loaded in the top-left 
panel in a new window, titled by the name of object. This shows we have successfully loaded 
the data. The columns have been automatically named by R as V1 through to V40, as column 
names have to start with a letter. The rows are simply numbered - the only restriction to row 
names is that they must be unique. 



  

 

What do you think will happen if you run the command above without including the header 
argument? Try it by saving the contents into a new object called test and compare this to 
inf.data: 

test <- read.csv("inflammation_data.csv")  

Another object named test now appears. We can use the head command to inspect the first 6 
rows of each object. For display purposes, we’ll also only include the first 6 columns: 

head(test[,1:6]) 
head(inf.data[,1:6]) 

What do you observe? 

This is a good example of how easily something unwanted can happen in R and the importance 
of checking your objects contain what you intend them to. Any mistakes can simply be corrected 
by re-running the command e.g. with the appropriate header argument, and overwriting any 
previous version of the object. 

 

 

 

  



  

 

Learning Objective Two - Two-dimensional data structures 

Our original file contained rows and columns of data, and R has suitable 2-dimensional data 
structures to store such data: matrices and dataframes. These can both be thought of as tables 
of data, analogous to an Excel spreadsheet. Matrices require all columns to be of the same 
type, while data frames can have columns of different data types. Given that experimental data 
is often a mixture of numeric values (e.g. measurements) and associated descriptive 
information, data frames are a very commonly used data structure in R. 

Note that while it is possible to hold mixed data types in a matrix object as well, R will use its 
internal hierarchy of data types to choose one that is applicable to all columns – often this 
means numerical columns get converted to character strings, and certain functions may not 
perform as expected if this is not noticed, or produce an error message. 

In this case, a data frame object has been created: 

class(inf.data) 

We can check how each column of data has been treated by R e.g. for the first column: 

class(inf.data[,1]) 

In fact, as all the columns contain data of the same type, R could equally well store this data as 
a matrix object. A data frame has been created because the functions read.csv and read.table 
are specifically designed to deal with mixed column classes and produce data frames by default. 
Another function scan can be used to read in matrices, especially large ones. 

It is worth noting that some functions operate on matrix objects, and so converting between 
classes is sometimes needed. 

inf.data <- as.matrix(inf.data) 
class(inf.data) 

We will continue with the matrix form of this object for now, and load a mixed dataset later. 
Most operations on either kind of 2-dimensional object are the same. For example, we can find 
the dimensions of a matrix or a data frame with the dim function. 

dim(inf.data) 

The output of dim is printed to the screen and shows the number of rows the object contains, 
followed by the number of columns (the convention is always rows, then columns but this can 
be hard to remember at first as there is no indication). 

If unsure, the functions nrow and ncol will return the number of rows or columns respectively; 
these take as their argument the name of the object: 

nrow(inf.data) 
ncol(inf.data) 

This particular file suffers from the lack of any labels to annotate what data is recorded in the 
rows and columns. The Software Carpentry tutorial provides the following information: “We are 
studying inflammation in patients who have been given a new treatment for arthritis. Each row 
holds the observations for just one patient. Each column holds the inflammation measured in a 
day, so we have a set of values in successive days.” 



  

 

Our object has 60 rows and 40 columns, so we infer from the information above that there are 
60 patients, and 40 days. 

Again we see a way for mistakes to easily creep into data analysis – here we have to rely on 
information given to us second-hand to know what is what. What if that information were 
wrong? Are there any checks we can make ourselves to be sure patients are in rows? We are 
not told how many patients were included so simply checking the number of rows won’t help. 
And what if there were 50 patients and measurements taken over 50 days? 

Even with careful scrutiny it would be hard to know how the data are presented (patients in 
rows or columns) from the data alone. We could perhaps make some plots to help us, or we 
might spot the zero values in the first column. Scrolling down the object display in the top-left 
panel or displaying the first column in the console confirms they are all zeroes, and the values 
in each row tend to rise across the first few columns. We may be reassured by this that the 
patients are indeed in the rows, since we might expect inflammation to rise over time, and an 
individual recording 0 on every single day might be unlikely (though not impossible). 

It would be prudent to add some row and column names to reduce the chance of making a 
mistake later when dealing with this data: 

rownames(inf.data) <- paste("Patient", 1:60, sep = "_") 
colnames(inf.data) <- paste("Day", 1:40, sep = "_") 

This introduces the very useful and versatile function paste. Note that adding row and column 
names does not change the size of the data object, but we can see them displayed by reloading 
the object. They are similar to the alphabetical columns and numbered rows in an Excel 
spreadsheet. 

 



  

 

Learning Objective Three -  Accessing Data 

Earlier we looked at accessing elements of a one-dimensional vector object. For matrices and 
dataframes, a similar approach with square brackets is used: 

object_name[rows, cols] 

By specifying the rows and columns of interest, an object can be subset in a variety of ways to 
inspect or extract different parts of it. 

inf.data[1, 1] # this pulls out the data value in the first row of the first 
column 
 
inf.data[30, 20] # any single entry can be extracted by specifying the row an
d column 

How might you select the data in the first 5 rows for the first 5 columns? Add your command 
for this below. 

## If we need to select non-contiguous portions of the object, we’ll need the 
help of the c() function: 
inf.data[c(1, 3, 5), c(10, 20)] 
 
## If you want to display all columns for selected row(s): 
 
inf.data[5,] # All columns for row 5 
 
## Or select all rows for given column(s): 
inf.data[,1:5] # all rows, columns 1 through 5 

We added column names to our object earlier, and columns can also be accessed by name (in 
quotes): 

inf.data["Patient_1",] 

Suppose you want to determine the maximum inflammation for patient 5 across days three to 
seven. To do this you would extract the relevant subset from the data frame and calculate the 
maximum value. Which of the following lines of R code gives the correct answer? 1. 
max(inf.data[5, ]) 2. max(inf.data[3:7, 5]) 3. max(inf.data[5, 3:7]) 4. max(inf.data[5, 3, 7]) 

 



  

 

Learning Objective Four -  Analysing Data 

We can perform many simple analyses of the data by applying functions such as max, min, 
mean, or summary to our data object. We might want to determine the maximum value per 
patient or the average value per day. The following examples illustrate how this can be done 
extremely efficiently in R, starting with an approach that is the opposite (and definitely not 
recommended!). 

Suppose we want to find the maximum inflammation score for each patient across the 40 days 
of measurements. Let’s start by calculating it for patient 1. 

Extracting the data for patient 1 (i.e. the first row) is the first obvious step, and perhaps we 
decide it makes sense to store the values for this patient in a new object: 

inf.patient1 <- inf.data[1,]  

We can then calculate the maximum value for Patient 1: 

max(inf.patient1) 

Although this seems reasonable enough, there are several issues: 

• we’ve created an additional object to store data that is simply a duplicate of what is 
already contained in our original object 

• it doesn’t scale well to do this for all 60 patients 

• the result is output to the console and therefore hard to do anything further with 

If we did continue with this approach, there would be 60 new objects (all with very similar 
names), a high probability of having made a typing mistake somewhere (perhaps overwriting 
one patient’s data with another), and a large set of results that we’d have to manually write 
down or transfer to an Excel spreadsheet - all of which is very messy and prone to error. 

We can easily dispense with the intermediate step of creating a new object: 

# max inflammation for patient 1 
max(inf.data[1, ]) 
 
# or equivalently 
max(inf.data["Patient_1", ]) 

These commands are the same as extracting the data for patient 1 as we did earlier, but instead 
of printing to the screen or storing in a new object, the command is used directly as an 
argument to the function max by enclosing in the (). 

Commands can be nested in this way to achieve multiple steps in a single line of code; too many 
commands in one line though can make it harder to work out what the code is doing, as well as 
increase the chance of the code not doing as intended – the location of brackets becomes vital. 

We’d really like a way to this for all 60 patients without duplicating the code 60 times. Loops 
are one option (not discussed here) but the apply function is the most efficient approach: 

`apply** allows us to repeat a function on all of the rows (MARGIN = 1) or columns (MARGIN = 
2) of a data frame simultaneously: 

max_inf_patient <- apply(inf.data, MARGIN = 1, max) 



  

 

Similarly, we could compute the average inflammation per day with a single line of code: 

avg_inf_day <- apply(inf.data, MARGIN = 2, mean) 

Comparing these two commands will help understand the apply function, which is not intuitive 
but highly efficient as we have seen. The arguments to apply are: 

• the data object 

• MARGIN, indicating whether to apply over rows (1) or columns (2) 

• the name of (another) function to be applied 

We wanted to find the maximum inflammation score for each patient, so we looked across the 
rows and used the max function. To modify the command to find the average inflammation per 
day, we switched the MARGIN argument to 2 for columns, and gave the final argument as 
mean. 

While the MARGIN argument is explicitly assigned above, R is equally happy to infer from the 
shortened command apply(inf.data, 1, max) that the 1 should be assigned to the second defined 
argument of apply. You can also write your own bespoke functions as required and use apply to 
run them over an object. 

We have also solved the final issue with our initial approach by storing the results in suitably-
named objects for further work. 

length(max_inf_patient)  
head(max_inf_patient) 

Another useful function is summary. This returns the minimum value, first quartile, median, 
mean, third quartile and the maximum value, all very useful information to make an initial 
inspection of your data. 

summary(inf.data[, 1:4]) # for each of the first 4 days 

 



  

 

Learning Objective Five - Plotting Data 

Visualising data is a vital part of statistical analysis, and R’s plotting capabilities are a key reason 
for its popularity. There is a related course R: Visualisation that you can take if interested to 
learn more. Here, we introduce ways to make a few simple plots. Let’s take a look at the 
average inflammation over time. Recall that we already calculated these values above and 
saved them in an object named avg_inf_day. Plotting the values is done with the function plot: 

plot(avg_inf_day) 
 
## Default labels and settings are used but we can refine our plot with some 
additional arguments: 
 
plot(avg_inf_day, main="Inflammation Scores Over Time", xlab="Day", ylab="Ave
rage_inflammation_score") # adding title and axis labels 
 
plot(avg_inf_day, main="Inflammation Scores Over Time", xlab="Day", ylab="Ave
rage_inflammation_score", pch=4, col="red") # changing the plotting symbols a
nd colour 
 
## Similarly, we could plot the data per patient: 
plot(max_inf_patient) 
 
## Here, we might decide to use a boxplot instead: 
boxplot(max_inf_patient, main="Maximum Inflammation Scores", ylab="Max_inf_sc
ore") 
legend("topright", legend="n=60 patients", cex=0.8) # adding a legend 

When we are happy with our plots, they can be saved to a file. 

pdf("Inflammation_plots.pdf", onefile=T) 
plot(avg_inf_day, main="Inflammation Scores Over Time", xlab="Day", ylab="Ave
rage_inflammation_score", pch=4, col="red") 
boxplot(max_inf_patient, main="Maximum Inflammation Scores", ylab="Max_inf_sc
ore") 
legend("topright", legend="n=60 patients", cex=0.8) 
dev.off() 

This will be saved to the current working directory by default so if we check the folder, a new 
file named ‘Inflammation_plots.pdf’ should have been created. The onefile=T argument 
instructs R to append additional plots to the same file and the dev.off() command at the end 
closes the file connection. You can also export plots directly to a pdf file from the RStudio plot 
panel. 

 



  

 

Learning Objective Six - Data Handling 

We’ll next read in data from another file to illustrate a few more features of data frames and 
how to work with them in R. In this case the file does contain a header row and the default 
arguments for read.csv are appropriate for this file so we only need provide the filename: 

data2 <- read.csv("sample.csv") 
head(data2) 

This displays the first 6 rows, and we can see immediately that we have a range of different 
types of data in each column. Let’s see how R has treated it (you can paste the following 4 lines 
as one block). 

for(i in 1:ncol(data2)) { 
    print(class(data2[,i])) 
  } 

Here, we’ve used a for loop to iterate over each column in the object data2, and print to screen 
the class of each column. The output tells us that columns 1:3 are treated as factors, column 5 
as numeric and the remaining columns as integer values. We haven’t yet mentioned factors and 
will only briefly discuss them here but they are very important for statistical analysis in R. They 
are one-dimensional, like vectors, and are particularly useful for categorical data. 

length(data2$Group) 
data2$Group 

Each of the 100 entries in the Group column are printed to the screen, and at the end is the 
additional information: Levels: Control Treatment1 Treatment2 

These are the unique set of entries in this column, known as the levels of the factor. You may 
have come across factors before in the context of experimental design or ANOVA - in this case 
the experiment might test the effect of 2 treatments (Treatment1 and Treatment2) on blood 
pressure, perhaps to see if it reduces compared to a control group. Other information about 
the patients, such as their age and gender may be useful to include in the analysis, especially if 
they are not matched across the treatment groups. 

R will treat any columns containing character strings (text) as a factor by default with read.csv 
or read.table. We don’t always want to do this though, and indeed it is usually preferable to 
switch this behaviour off, and specifically convert data we do want to treat as factors later. This 
is because factors store data differently and so can sometimes behave differently to vectors. 
For example, here the first column of IDs would preferably be a character vector, as could 
Gender unless we needed to include it as an additional explanatory factor in our analysis 
model. 

The way to switch off this default behaviour is with the argument ‘stringsAsFactors’ – if you 
check the help page for read.csv again, you’ll see it listed among the arguments, and it is TRUE 
by default (although it’s not readily apparent that this is the case). 

data2 <- read.csv("sample.csv", stringsAsFactors=FALSE) 



  

 

Repeating our loop to check the class of each column, we now see that the first 3 columns are 
character vectors rather than factors: 

for(i in 1:ncol(data2)) { 
    print(class(data2[,i])) 
  } 

We can specifically convert the Group column to a factor: 

data2$Group <- as.factor(data2$Group) 
class(data2$Group) 

A very useful summary function is table: 

table(data2$Group) 
table(data2$Gender) 

This alerts us to the fact that data in the Gender column has not been entered consistently, 
which we might have already spotted from viewing the object in RStudio. 

To fix this, we can make sure F and M are used throughout; this involves determining which 
rows contain a lowercase f for example, and substituting with F. Similarly for the lowercase case 
m: 

data2$Gender <- gsub("f", "F", data2$Gender) 
data2$Gender <- gsub("m", "M", data2$Gender) 
 
## checking we have modified the data as intended 
table(data2$Gender) 

  



  

 

Further information 

Course Clinics 
The IT Learning Centre offers bookable clinics where you can get pre- or post-course advice. Contact 
us using courses@it.ox.ac.uk. 

Study Videos from Molly 
Molly is our collection of self-service courses and resources. This includes providing LinkedIn Learning 
video-based courses free to all members of the University. Visit skills.it.ox.ac.uk/molly and sign in 
with your Single Sign-On (SSO) credentials.  

Some courses recommend pre- and/or post-course activities to support your learning. You can watch 
the online videos anywhere, anytime, and even download them onto a tablet or smartphone for 
off-line viewing.  

If you need a quiet place to work through learning activities away from distractions, the IT Learning 
Centre offers ‘quiet’ sessions where you can book a place. These are scheduled frequently during 
normal term times. 

About the IT Learning Portfolio online 
Many of the resources used in the IT Learning Centre courses and workshops are made available as 
Open Educational Resources (OER) via our Portfolio website at skills.it.ox.ac.uk/it-learning-portfolio. 

Find the pre-course activity for this course in the IT Learning Portfolio: visit  
skills.it.ox.ac.uk/it-learning-portfolio and search for “R activity”. 

About the IT Learning Centre 
The IT Learning Centre delivers over 100 IT-related teacher-led courses, which are provided in our 
teaching rooms and online, and we give you access to thousands of on-line self-service courses 
through Molly (powered by LinkedIn Learning). 

Our team of teachers have backgrounds in academia, research, business and education and are 
supported by other experts from around the University and beyond. 

Our courses are open to all members of the University at a small charge. Where resources allow, we 
can deliver closed courses to departments and colleges, which can be more cost-effective than 
signing up individually. We can also customize courses to suit your needs. 

Our fully equipped suite of seven teaching and training rooms are usually available for hire for your 
own events and courses. 

For more information, contact us at courses@it.ox.ac.uk. 

About IT Customer Services 
The IT Learning Centre is part of the Customer Services Group. The group provides the main user 
support services for the department, assisting all staff and students within the University as well as 
retired staff and other users of University IT services. It supports all the services offered by IT Services 
plus general IT support queries from any user, working in collaboration with local IT support units. 

The Customer Services Group also offers a data back-up service; an online shop; and a 
PC maintenance scheme. Customer Services is further responsible for desktop computing services – 
for staff and in public/shared areas – throughout UAS and the Bodleian Libraries. 

https://skills.it.ox.ac.uk/molly
https://skills.it.ox.ac.uk/it-learning-portfolio
https://skills.it.ox.ac.uk/it-learning-portfolio
mailto:courses@it.ox.ac.uk
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