

MATLAB: A Comprehensive
Introduction

How to Use This Book

This handbook accompanies the taught sessions for the course. Each section contains
a brief overview of a topic for your reference and one or more exercises.

The document is written as a PDF, with internal links as well as links to online
documentation. Furthermore, it has been designed so that you can copy and paste
example commands from the PDF. You should have the PDF open during the taught
sessions of the course.

The Exercises

Exercises are arranged as follows:

• A title and brief overview of the tasks to be carried out

• A numbered set of tasks, together with a brief description of each

• A numbered set of detailed steps that will achieve each task

Some exercises, particularly those within the same section, assume that you have
completed earlier exercises. Your teacher will direct you to the location of files that
are needed for the exercises. If you have any problems with the text or the exercises,
please ask the teacher or demonstrator for help.

This book includes plenty of exercise activities. You should try them during the
course, while the teacher and demonstrator(s) are around to guide you. Later, you
may attend follow-up sessions at ITLC, where you can continue to work on the
exercises, with some support from IT teachers. Other exercises are for you to try on
your own, as a reminder or an extension of the work done during the course.

Writing Conventions

A number of conventions are used to help you to be clear about what you need to
do in each step of a task.

• In general, the word press indicates you need to press a key on the key-
board. Click, choose or select refer to using the mouse and clicking on
items on the screen.

• Names of keys on the keyboard, for example the Enter (or Return) key are
shown like this Enter.

• Multiple key names linked by a + (for example, Ctrl+Z) indicate that
the first key should be held down while the remaining keys are pressed; all
keys can then be released together.

• Words and commands typed in by the user are shown like this.

• Labels and titles on the screen are shown like this, unless there is a link to
a help file in which case they are shown as follows: help.

University of Oxford i IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/help.html

• Drop-down menu options are indicated by the name of the options separated
by a vertical bar, for example File|Print. In this example you need to select
the option Print from the File menu. To do this, click with the mouse
button on the File menu name; move the cursor to Print; when Print is
highlighted, click the mouse button again.

• A button to be clicked will look like this.

• The names of software packages are identified like this, and the names of
files to be used like this.

Revision Information

Version Date Author Changes Made
2.0 Nov 2010 Robert Stewart Complete rewrite
2.1 Jan 2011 Robert Stewart Update
2.2 May 2011 Robert Stewart Update
2.3 Oct 2011 Robert Stewart Update
2.4 Feb 2012 Robert Stewart Update
2.5 May 2012 Robert Stewart Update
3.0 Oct 2012 Robert Stewart Major Update
3.1 Dec 2012 Robert Stewart Update
4.0 Jan 2013 Robert Stewart 4 Session Update
4.1 May 2013 Robert Stewart Exercise Updates
4.2 Jan 2014 Robert Stewart Exercise Updates
4.3 Oct 2014 Robert Stewart Version Updates
5.0 Jan 2015 Erasmia Lyka / Tasos Pa-

pastylianou
Version Update

5.1 May 2015 Erasmia Lyka Exercise Updates
6.0 Oct 2015 Erasmia Lyka Exercise Updates
7.0 Oct 2016 Catherine Paverd Version Updates
7.1 Jan 2017 Catherine Paverd Exercise Updates
7.2 Oct 2017 Catherine Paverd Exercise Updates
7.3 Oct 2018 Catherine Paverd Exercise Updates

Copyright

This document and the accompanying presentation slides are made available by
Catherine Paverd, under a Creative Commons licence: Attribution, Non Commer-
cial, No Derivatives. Individual resources are subject to their own licensing condi-
tions as listed. Screenshots in this document are copyright of The Mathworks. The
Oxford University logo and crest is copyright of Oxford University and may only be
used by Oxford University members in accordance with the University’s branding
guidelines.

IT Learning Centre ii University of Oxford

Contents

1 Introduction 1

1.1 What You Should Already Know . 1

1.2 What you will learn . 1

1.3 Where can I get a copy of MATLAB? . 2

2 Fundamentals - How to interact with computers 3

2.1 Basic Concepts . 3

2.2 The MATLAB Environment . 3

2.2.1 Overview . 4

2.2.2 Desktop Tools and Development Environment 5

2.2.3 The Command Window . 6

2.2.4 Understanding File Locations . 8

2.2.5 The MATLAB Path . 8

2.2.6 The MATLAB Editor . 9

3 Data Types - How to store different types of information 13

3.1 Numeric Classes . 13

3.2 Characters and Strings . 14

3.3 The Logical Class . 15

4 Matrices - How stored data is organised for processing 17

4.1 Matrix Fundamentals . 17

4.2 Matrix Creation . 18

4.3 Matrix Concatenation . 19

4.4 Matrix Indexing . 20

4.5 Matrix Information . 22

4.6 Matrix Resizing . 23

4.7 Matrix Reshaping and Shifting . 24

4.8 Matrix Sorting . 25

5 Operators and Control - How to tell a computer what to do 29

5.1 Arithmetic Operators . 29

5.2 Relational Operators . 30

5.3 Logical Operators . 30

5.4 Conditionals . 31

5.5 Loops . 33

5.6 Return and Keyboard . 35

6 Programming - How to organise your code 39

6.1 Scripts . 39

6.2 Functions . 39

6.3 Script Components . 40

6.3.1 Comments . 40

6.3.2 Housekeeping Code . 40

6.3.3 Script Body - drawing a circle . 40

6.4 Function Components . 41

6.4.1 Function Declaration . 41

6.4.2 Help Comment Block . 41

6.4.3 Function Body . 41

2018 iii IT Learning Centre

6.5 Modular Programming . 42
6.6 Toolboxes . 43

7 Error Handling - How do deal with things that go wrong 47
7.1 Errors . 47

7.1.1 Typographical Errors . 47
7.1.2 Syntax Errors . 47
7.1.3 Array Indexing and Assignment Errors . 47
7.1.4 Algorithmic Errors . 48

7.2 Debugging . 48
7.2.1 Debugging in the MATLAB editor . 48
7.2.2 Debugging in the MATLAB command prompt 50

8 Graphics 1: Figures, Axes and Graphs 52
8.1 Figures, Axes and Graphs . 52
8.2 Setting up Figures . 53

8.2.1 figure . 53
8.2.2 subplot . 53
8.2.3 axes and axis . 55

8.3 GUI Tools . 56
8.4 Plotting Functions . 59

8.4.1 Line Graphs: plot . 61
8.4.2 Bar Graphs: bar and barh . 63

9 Graphics 2: Objects and Images 65
9.1 Objects, Handles and Properties . 65
9.2 Working with Images . 67

9.2.1 Displaying Images . 67
9.3 Printing and Exporting . 68

10 File Handling - How to handle internal and external files and data 72
10.1 MAT-Files . 72

10.1.1 GUI Import and Export . 73
10.2 Excel Files . 74
10.3 Text (ASCII) Files . 75
10.4 Binary Files . 76

11 Performance - How to determine how efficient your code is 81
11.1 Measuring Performance . 81

11.1.1 Stopwatch timing . 81
11.1.2 The Profiler . 81

11.2 Improving Performance . 83
11.2.1 Preallocation . 84
11.2.2 Vectorization . 85

12 What Next? 86
12.1 Computer . 86
12.2 IT Services Help Centre . 86
12.3 Books . 86

IT Learning Centre iv University of Oxford

List of Exercises

1 Getting Started with the MATLAB Environment . 11
2 Setting the MATLAB Path . 12
3 Exploring MATLAB Data Types . 16
4 Introduction to Matrices . 26
5 Magic Matrices . 27
6 Control Statements - Basic Concepts . 36
7 Fibonacci Numbers . 36
8 Roots of quadratic equation . 38
9 Function for roots of quadratic equation . 44
10 Noughts and Crosses . 45
11 Error Checking . 51
12 Interactive Plot Tools . 56
13 Data Exploration Tools . 57
14 Exploring Graphics Objects . 66
15 Printing and Exporting Graphics through the GUI . 70
16 Creating a Video . 71
17 Magic Files . 77
18 Demographic statistics of UK and European Union countries 79
19 Measuring Performance . 82

2018 v IT Learning Centre

MATLAB: A Comprehensive Introduction

1 Introduction

Welcome to the course MATLAB: A Comprehensive Introduction. This booklet
accompanies the course delivered by Oxford University’s IT Learning Centre. Al-
though the exercises are clearly explained so that you can work through them your-
selves, you will find that it will help if you attend the taught session where you can
get advice from the teacher, demonstrator and each other.

If at any time you are not clear about any aspect of the course, please make sure
you ask your teacher or demonstrator for some help. If you are away from the class,
you can get help by email from your teacher or from help@it.ox.ac.uk.

1.1 What You Should Already Know

This course covers the fundamentals of data analysis with MATLAB. No prior
knowledge of MATLAB is expected, however watching some introductory videos
on Lynda.com is highly recommended. We will assume that you are familiar with
opening files from particular folders and saving them, perhaps with a different name,
back to the same or a different folder.

The computer network in our teaching rooms may differ slightly from that which
you are used to in your College or Department; if you are confused by the differences
ask for help from the teacher or demonstrator.

1.2 What you will learn

This series of 4 sessions will cover MATLAB core functionality as follows:

Session 1: Getting Started

• Fundamentals - How to interact with computers

• Data Types - How to store different types of information

• Matricies - How stored data is organised for processing

Session 2: Programming Basics

• Operators and Control - How to tell a computer what to do

• Programming - How to organise your code

• Error Handling - How do deal with things that go wrong

Session 3: Working with Graphics

• Graphics 1 - How to work with Figures, Axes and Graphs

• Graphics 2 - How to work with Objects and Images

Session 4: Further Programming

• File Handling - How to handle internal and external files and data

• Performance - How to measure how program efficiency

University of Oxford 1 IT Learning Centre

MATLAB: A Comprehensive Introduction

1.3 Where can I get a copy of MATLAB?

Oxford University runs a software licence server that provides access to concurrent
licences to the Matlab software for any University department or college. For more
details please refer to http://www.eng.ox.ac.uk/̃labejp/TAH/matlabTAH.html

IT Learning Centre 2 University of Oxford

MATLAB: A Comprehensive Introduction

2 Fundamentals - How to interact with computers

Analogy: The Language of Computers

Let’s assume you only speak English, but you need to email some instructions to
a colleague in French. To do this, you could write the email in English, send it to
a translator to translate it into French, and then send it to your colleague. Your
colleague will then be able to understand your instructions and execute them.
In a similar way, programmers write programs in a programming language (like
MATLAB), but a computer can only understand computer language (machine
code). So we need to write the program, send it to a Compiler or an Interpreter
to translate it, and then give it to the computer to execute.

2.1 Basic Concepts

At the fundamental level, a computer is a collection of small components that have
either a high (1) or a low (0) state. That is to say, a computer can understand
instructions given by a series of 1’s and 0’s, called ‘machine code’. Now, if one were
to write ‘Welcome!’ in machine code it would look like this: ‘01010111 01100101
01101100 01100011 01101111 01101101 01100101 00100001’. So you can image how
long it would take to write an entire program. To avoid this we use programming
languages like MATLAB, C, Python and others. These languages allow us to give
a computer instructions easily, for example by writing sum in order to add two
numbers. Languages that are relatively close to machine code are known as low-
level languages, such as Assembly. On the other hand, high-level languages such as
Python and MATLAB are very abstracted from machine code, and are thus more
user friendly.

Normally we write programming instructions in a text editor. We then use a Com-
piler or an Interpreter to translate what we have written into something a computer
can understand. This process is shown in figure 2.1. Usually, one is able to write
code, compile/ interpret it, and execute it all within one program, or environment.
Some development environments will offer more powerful functionality, such as mul-
tiple browsers (to see different parts of the code you are working on), or a debugger
(to quickly identify errors in the code). The MATLAB Environment will be discussed
in greater detail in the next section.

2.2 The MATLAB Environment

MATLAB (MATrix LABoratory) is a high-level programming language with an
interactive environment, used for algorithm development, data visualization, data
analysis, and numeric computation. Core strengths of the system include rapid
development, powerful built-in functionality and extensive application-specific func-
tionality provided by both official toolboxes and and user-contributed code.

MATLAB includes extensive documentation, which can be accessed through both
the program help menu and the web. For example, the official Getting Started

University of Oxford 3 IT Learning Centre

MATLAB: A Comprehensive Introduction

Figure 2.1: The stages of program execution.

guide is here: HelpIMatlabIGetting Started. In this section, we will introduce
the MATLAB environment and learn how to enter commands, get help, and save
and load sessions.

2.2.1 Overview

MATLAB consists of the language itself, the development environment and multiple
powerful libraries, some of which are discussed in more detail here:

• The Language - The MATLAB language is a high-level matrix/array lan-
guage with control flow statements, functions, data structures, input/output,
and object-oriented programming features. It allows both “programming
in the small” to rapidly create quick programs you do not intend to reuse.
You can also do “programming in the large” to create complex application
programs intended for reuse.

• Desktop Tools and Development Environment - This part of MAT-
LAB is the set of tools and facilities that help you use and become more
productive with MATLAB functions and files. Many of these tools are
Graphical User Interfaces (GUIs). It includes: the MATLAB desktop and
Command Window, a text editor, a debugger, a code analyzer, and browsers
for viewing help, the Workspace, and folders.

• Mathematical Function Library - This library is a vast collection of
computational algorithms ranging from elementary functions, like sum, sine,
cosine, and complex arithmetic, to more sophisticated functions like matrix
inverse, matrix eigenvalues, and fast Fourier transforms.

• Graphics Libraries - MATLAB has extensive facilities for displaying vec-
tors and matrices as graphs, as well as annotating and printing these graphs.
It includes high-level functions for two-dimensional and three-dimensional
data visualization, image processing, animation, and presentation graphics.
It also includes low-level functions that allow you to fully customize the
appearance of graphics as well as to build complete GUIs on your custom
built MATLAB applications.

• External Interfaces Library - This library allows you to write C and

IT Learning Centre 4 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/learn_matlab/bqr_2pl.html

MATLAB: A Comprehensive Introduction

Fortran programs that interact with MATLAB. It includes facilities for
calling routines from MATLAB (dynamic linking), for calling MATLAB as
a computational engine, and for reading and writing MAT-files.

See also Product Overview

2.2.2 Desktop Tools and Development Environment

The first time you start MATLAB, the desktop appears with the following layout (I
have run a few commands for illustrative purposes):

Figure 2.2: The MATLAB Desktop: a Java GUI with several components.

The layout can be altered using the desktop Home tab Layout button:

University of Oxford 5 IT Learning Centre

http://www.mathworks.co.uk/help/matlab/learn_matlab/product-description.html

MATLAB: A Comprehensive Introduction

See also the Desktop Overview

The MATLAB Desktop is a Java GUI and, as such, should appear and behave in
a similar fashion on different operating systems. The two most important Desktop
Tools are the Command Window, which usually sits in the centre of the Desktop, and
the Editor, which usually occupies a separate window (though it may be docked).
In this session, we will introduce both.

2.2.3 The Command Window

The command window is used to create variables, enter commands and run programs
interactively. A command entered here is immediately processed by MATLAB to
produce a response, before the system returns a new prompt for further commands.
For example, if we enter 3 at the command prompt (type 3 and press Enter):

3

then the system returns:

ans =

3

Our command has created a variable called ans and assigned it the value 3. ans is
a special, generic variable short for ‘answer’. It is used and overwritten whenever a
statement returns a value that is not explicitly assigned to a variable.

MATLAB can perform basic arithmetic like a calculator. Entering

3+4

at the command prompt returns the value 7 in ans, overwriting the previous value.
In MATLAB, + is one of a family of arithmetic operators (see section 5).

Getting Help

For help on commands and operators you can enter help followed by the com-
mand, or operator name. e.g.

help fliplr

Further information is sometimes available using doc in the same way.
doc fliplr

Each time MATLAB outputs to ans, the old value is lost. For the system to re-
member more than one thing at a time, we need to define named variables:

x = 3+4

y = 3*4

IT Learning Centre 6 University of Oxford

http://www.mathworks.co.uk/help/matlab/learn_matlab/desktop.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/help.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/doc.html

MATLAB: A Comprehensive Introduction

Getting Workspace Information

To see the current value of a single variable, you can enter the variable name at
the command prompt. e.g.

x

For information on all currently defined variables, you can use who and whos

who

whos

Alternatively, look at the Workspace Browser in the GUI (top right by default).

Command Window Output

As noted above, variable values are displayed in the Command Window when the
variable name is entered. However, adding a semi-colon after a variable name, or
expression, suppresses the usual output. For example, typing x and pressing Enter
will cause MATLAB to display the variable name and value. However, adding a
semicolon after the variable (for example typing x;) will suppress the output.

To save space in program output, we can use disp to display variable values without
printing the array name. A semi-colon does not suppress the output from disp.

Mathematical Display Format

The format command can be used to control the output format of numeric values
displayed in the Command Window. This does not affect computation. To view
the options, use:

help format

For example, MATLAB has pi as a pre-defined as a mathematical constant, but
we can change how it is displayed using format as shown in the figure below:

The clc command clears the Command Windows, while the home function sends
the cursor home (to the top left of the Command Window). These look superficially
similar but the Command Window history is still visible by scrolling up for home

but not clc. Paged output can be obtained using more.

University of Oxford 7 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/who.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/whos.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/format.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/format.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/home.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/home.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/more.html

MATLAB: A Comprehensive Introduction

Accessing the Command History

Previous commands can be accessed in the Command Window by dragging and
dropping a line from the GUI Command History Browser (or double-clicking to
run immediately). Note, the Command History Browser may not be docked in the
Desktop default layout, but this can be changed using the Layout button.

Alternatively, you can press the up arrow key to move backwards through entered
commands. In addition, partial matches can be used to find a particular line by
typing in the first few letters before pressing the up arrow key. Try typing x at the
prompt (don’t press enter), and then press the up arrow several times. Note that a
previous command selected in this way can be edited before entering again.

2.2.4 Understanding File Locations

There are several important locations defined in the MATLAB system.

matlabroot is the folder where MATLAB is installed. Important, modifiable loca-
tions include the current and startup folders.

The current folder is a reference location that MATLAB uses to find files. This
folder is sometimes referred to as the current directory, current working folder, or
present working directory. It is not the same location as the operating system current
folder. You can view and change the current folder in two main ways:

• In the Command Window, use the cd or pwd commands
• On the Desktop, use the tools just above the Current Folder Browser

The startup folder is the current folder in the MATLAB application when it
starts. On Windows and Apple Macintosh platforms, a folder called userpath is
added automatically to the search path (see below) upon startup, and is the default
startup folder. On Linux platforms, you can set the userpath as the startup folder.
You can view and edit the current user path by running userpath.

2.2.5 The MATLAB Path

For performance reasons, MATLAB limits where it looks for files. Files are only
accessible if they are in either the current folder, or the search path. The path is a
list of folder locations where MATLAB will search for program and data files. To
see the current path:

path

In Windows, with a typical MATLAB installation, this returns something like:

IT Learning Centre 8 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/matlabroot.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/cd.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/pwd.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/userpath.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/userpath.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/path.html

MATLAB: A Comprehensive Introduction

MATLABPATH

H:\My Documents\MATLAB

H:\Program Files\MATLAB\R200nn\toolbox\matlab\general

H:\Program Files\MATLAB\R200nn\toolbox\matlab\ops

H:\Program Files\MATLAB\R200nn\toolbox\matlab\lang

H:\Program Files\MATLAB\R200nn\toolbox\matlab\elmat

H:\Program Files\MATLAB\R200nn\toolbox\matlab\elfun

...

To edit the path, you can use addpath, rmpath, genpath, pathtool and savepath.
Alternatively, use the Set Path button on the Desktop Home tab (next to Layout):

2.2.6 The MATLAB Editor

Figure 2.3: The MATLAB Editor

The MATLAB Editor is used to view and edit MATLAB program files. Normal
MATLAB programs are text files with a .m extension and are often called M-files.
The Editor starts automatically when you create or open an M-file and provides
code highlighting and debugging features.

The simplest kind of MATLAB program is called a script. Scripts are simply a list
of commands stored in an M-file. When you run a script, the result is exactly the
same as if the commands were entered one-by-one in the command window.

University of Oxford 9 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/addpath.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rmpath.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/genpath.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/pathtool.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/savepath.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/script.html

MATLAB: A Comprehensive Introduction

To open a new (blank) script, you can use the key combination Ctrl+n, or click
the New button in the editor, or the New Script button on the desktop Home tab.

To open an existing file, you can use the edit or open commands, the key combi-
nation Ctrl+o, or click on the Open button in the editor or desktop Home tab.

Running scripts There are two main ways to run a script in MATLAB.

1. From the Command Window, you can enter the script name.
2. From the Editor, you can press F5, or click the Run button (which features

a green ’play’ triangle).

IT Learning Centre 10 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/edit.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/open.html

MATLAB: A Comprehensive Introduction

Exercise 1. Getting Started with the MATLAB Environment
• Start MATLAB
• Change the Current Folder
• Open the PDF Handbook
• Explore the Help System

Key Functions help, doc, pwd, format

Task 1
Start MATLAB

Step 1
Find MATLAB in Start Menu|All Programs, and click
on the program file (Matlab.exe).
Step 2
Note each of the components introduced above in the
MATLAB desktop. Test docking and undocking the
Command History, using the Layout button.

Task 2
Change the Current Folder

Step 1
To view the current folder enter pwd in the Command
Window.
Step 2
The course files will be distributed to your computer.
For MATLAB to operate on these files, change the Cur-
rent Folder to the folder in which you find the files (for
example, H:\MATLAB), as described in section 2.2.4.

Task 3
Open the PDF Handbook

Step 1
The PDF Handbook features internal links and links
to online documentation. It has also been designed so
that you can copy and paste some example commands.
Step 2
On your system (outside MATLAB), open the course
PDF now.
Step 3
Browse to section 2.2.3 in the PDF and write the code
example from the Mathematical Display Format box
into the MATLAB Command Window. Press Enter in
the Command Window after each line to see the result.

Task 4
Explore the Help System

Step 1
Read the Getting Help box in section 2.2.3, and run the
example commands.
Step 2
Run help and doc on several of the commands intro-
duced in this section: e.g. help, doc, whos, disp,
format, clc, home, cd, pwd.
Step 3
In the Help Browser (opened using doc), Enter path

in the Help Browser search box (top). Look at a few
of the entries listed, navigating using the back button
(top left).

University of Oxford 11 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/help.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/doc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/pwd.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/format.html

MATLAB: A Comprehensive Introduction

Exercise 2. Setting the MATLAB Path
• Update the Path
• Create a startup file

Key Functions help, doc, path, addpath, genpath, userpath

Task 1
Update the Path

Step 1
To view the path, enter path in the Command Window.
Hint: scroll up to view all the entries.
Step 2
To add the matlab folder to the MATLAB path,
run addpath(’insert the name of the path where

your Matlab files are stored here’), for example
addpath(’H:\matlab’). Enter path to view the
changes.
Step 3
To generate path locations for all subfolders within the
matlab folder, run genpath(’H:\matlab’). Use doc

addpath and doc genpath to find out more.
Step 4
Combining steps 2 and 3, add the whole
matlab folder tree to the path by running
addpath(genpath(’H:\matlab’)). You can use
the up arrow key to modify your previous command
(see section 2.2.3). Run path to view the changes.

Task 2
Create a startup file

Step 1
A startup.m file is a user-created script that runs
when MATLAB starts. It should normally go in the
userpath location. Run doc startup for details.
Step 2
To begin creating a startup file, open a new script in
the Editor by clicking the New Script button on the

Desktop Home tab, , and undock if docked:
Step 3
Add the path-updating command from Task 1, Step 4
into the script (you can use copy and paste).
Step 4
Add a second line to your script to update the current
folder, using cd(’H:\matlab’).
Step 5
In the Command Window, run userpath. Note the
path.
Step 6
In the Editor, click the save button and save your script
in the userpath location, with file name startup.m.
Step 7
Exit MATLAB and restart. Note the Current Folder
and updated path after startup.

IT Learning Centre 12 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/help.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/doc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/path.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/addpath.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/genpath.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/userpath.html

MATLAB: A Comprehensive Introduction

3 Data Types - How to store different types of
information

Analogy: Data Types

Humans tend to focus on different things at different times, for example, on num-
bers in a maths exam and letters in a language exam. In the same way, computers
also have different data types for storing information, but you need to specify which
data type you want the computer to use.

There are many different data types, or classes, supported in MATLAB. For an
overview, see IFundamental MATLAB Classes. Each data type has specific
characteristics that make it useful for storing specific information. For example, to
store numbers you would use a numeric class, but to store letters or words you would
use the character (char) class.

Figure 3.1: Fundamental MATLAB Data Types

3.1 Numeric Classes

The default type for numerical data is double precision floating point (or double).
A double occupies 64-bits of memory. Single precision floats (singles) are supported
in more recent versions of MATLAB, and they occupy 32-bits at the cost of lower
precision. Signed and unsigned integer types are also defined.

University of Oxford 13 IT Learning Centre

http://www.mathworks.co.uk/help/matlab/matlab_prog/fundamental-matlab-classes.html
http://uk.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html#f2-101310

MATLAB: A Comprehensive Introduction

Converting between types

You can convert between data types using the functions described in:
doc datatypes

For example:
format long

x = pi

y = single(x)

z = uint8(x)

whos

As mentioned before, MATLAB also has a powerful set of functions that perform
operations on stored data. However, not all functions work for all data types. For
example, sin is a built in MATLAB trigonometric function which is not defined for
integer types.

3.2 Characters and Strings

Text data are represented in MATLAB using the char or character data type. A
character in MATLAB is actually an integer value converted to its Unicode UTF-16
character equivalent (see char for details).

A string is a vector of characters. String variables are normally surrounded by single
quotes, and highlighted in pink.

name = [’Alan ’ ’M. ’ ’Turing’]

Strings are useful when working with and displaying text data, displaying warning
and error messages during program execution, and naming variables and files.

Strings are also commonly used to provide categorical inputs to MATLAB commands
(functions). See the Function and Command Syntax box in section 10.1 for further
details.

num2str is a function that converts numbers to character or string values. This can
be useful for labelling figures, and working with numbered files. Here is an example
of how num2str can be combined with matrix concatenation (recall section 4.3) to
reference a numbered file:

filename = [’DataFile’,num2str(400)]

filename =

DataFile400

str2num (or str2double) converts strings to numeric values, which can be useful
when data has been imported from an ASCII file for example.

IT Learning Centre 14 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sin.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f2-47856.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/char.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/num2str.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/num2str.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/str2num.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/str2double.html

MATLAB: A Comprehensive Introduction

3.3 The Logical Class

The logical data type represents a logical true or false state as 1 and 0, respectively.

A logical expression is a piece of matlab code that returns a logical value.

Using Logical Data

As introduced in section 4.4, logical values can be used in MATLAB for matrix
indexing. Logical values are also used in conditional statements. We will look at
these in more detail in section 5, but here is a simple example:

r = ’2’

if ischar(r)

circumference = 2*pi*str2num(r)

else

circumference = 2*pi*r

end

University of Oxford 15 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/logical.html

MATLAB: A Comprehensive Introduction

Exercise 3. Exploring MATLAB Data Types
• Create a random whole number between 1 and 10
• Convert the number to integer and string types
• Form a file name string and save workspace to file

Key Functions rand, *, round, fix, floor, ceil, num2str, save

Task 1
Get help on the rand

function

Step 1
Enter doc rand in the Command Window. Note the
Description for the scalar form with no inputs.

Task 2
Create a random whole
number between 1 and 10

Step 1
Open a new script and add a line to run rand and assign
the output to variable x (i.e. x=rand). Save and run
the script (don’t call it rand!).
Step 2
rand produces floating point numbers between 0 and 1.
To get a value between 1 and 10, you need to multiply
by 10 (enter help * for details). Modify the previous
command and run the script again.
Step 3
To get an integer (whole number) value, you need to
apply rounding. There are four rounding functions in
MATLAB: round, fix, floor and ceil. Remember
that a zero value is not allowed (this should help you
choose the rounding function). Modify the previous
command and run the script a few times to confirm
that x is a whole number between 1 and 10.

Task 3
Convert the number to
integer and string types

Step 1
In the Workspace Browser (top right of desktop), right
click Name and ensure Bytes and Class are selected.
Step 2
In your script, use the integer conversion functions de-
tailed in doc datatypes to convert the random number
into different integer data types. Each time use an ex-
pression like x = func(x) (e.g. x = int8(x)) to over-
write x. View the changes in the Workspace Browser.
Step 3
use num2str to convert x into a string, assigning the
response to a new variable s (s = num2str(x)).

Task 4
Form a file name string and
save workspace to file

Step 1
Type help strcat and read the documentation. Then
create a string to store the word ’DataFile’ and use
strcat together with num2str to form a file name of
the form ’DataFileN’, where N is the random number.
The variable name should be filename.
Step 2
Use save(filename) to save your workspace to the
named file. The saved file should appear in your Cur-
rent Folder browser. Double click to view the contents.

IT Learning Centre 16 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rand.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mtimes.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/round.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fix.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/floor.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ceil.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/num2str.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/save.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rand.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/doc rand.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rand.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/round.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fix.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/floor.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ceil.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/strcat.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/num2str.html

MATLAB: A Comprehensive Introduction

4 Matrices - How stored data is organised for processing

4.1 Matrix Fundamentals

• All of the datatypes mentioned in 3 can be stored in an ordered configu-
ration known as a matrix. All data in MATLAB is stored in matricies of
different sizes for ease of accessibility.

• The elements of a matrix must all be of the same data type (see section
3) (numeric, character, logical etc.), but here we will focus on numeric
matrices.

• MATLAB uses two-dimensional matrices (where the data is stored in rows
and columns) to store both single elements and series of elements. If a
matrix has N rows and M columns, it is called an N xM matrix. For
numeric data, special meaning is sometimes attached to 1-by-1 matrices,
which are called scalars, and to matrices with only one row or column,
which are vectors.

• MATLAB also supports data structures that have more than two dimen-
sions. These data structures are referred to as multidimensional arrays (for
example, 2D, 3D or 4D arrays) in the MATLAB documentation, and indeed
the matrix is really a special case of an n-dimension array, with n=2 (see
section 3). In this book, we will focus on two-dimensional matrices.

Analogy: The Matrix Structure

You could think of a two-dimensional matrix in MATLAB like a large table of
data, similar to what you see in a Microsoft Excel spreadsheet. Essentially, each
individual piece of information has a unique position, and can be accessed by using
specific row and column values.

University of Oxford 17 IT Learning Centre

MATLAB: A Comprehensive Introduction

4.2 Matrix Creation

There are many ways to create a matrix in MATLAB. In section 2.2.3, the code
examples with defined variables created simple matrices to store scalar numeric data.
A simple way to create two-dimensional matrices is to use the matrix constructor
operator, []. For example,

A = [6 3 2 8; 5 1 3 7; 1, 6, 7, 2;4,5,4,1]

A =

6 3 2 8

5 1 3 7

1 6 7 2

4 5 4 1

Each row of the matrix is terminated with a semi-colon, while the elements within
each row are separated by either commas or spaces. Spaces matter when dealing
with signed numeric data, and commas are less error-prone. Compare:

[7 -2 +5], [7 - 2 + 5], [7, - 2, +5]

Because matrices are rectangular, all rows in a matrix must have the same number
of elements and MATLAB will return an error if this condition is violated.

B = [6 3 2 8; 5 1 3]

In addition to the matrix constructor operator, MATLAB also has a number of built-
in functions (commands) for creating particular kinds of matrix. Frequently-used
examples include the following.

ones Create a matrix (or array) of all ones
zeros Create a matrix of all zeros
rand Create a matrix of uniformly distributed random numbers
randn Create a matrix of normally distributed random numbers

IT Learning Centre 18 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ones.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/zeros.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rand.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/randn.html

MATLAB: A Comprehensive Introduction

Generating Numeric Sequences: The Colon Operator

Numeric sequences are useful for indexing and they can be created in MATLAB
using the colon operator. The colon operator (first:last) generates a vector
of sequential numbers from the first value to the last. The default sequence is
made up of incremental values, each 1 greater than the previous one, even if the
end value is not an integral distance from the start:

D = 4:7, D = 4:7.5

D =

4 5 6 7

The numeric sequence does not have to be made up of positive integers. It can
include negative numbers and fractional numbers as well:

D = -1.5:1.5

D =

-1.5000 -0.5000 0.5000 1.5000

If the last value is lower than the first, MATLAB will return an empty matrix:
D = 7:4

D =

Empty matrix: 1-by-0

For a sequence with non-default stepping, use (first:step:last), where step

can be any real value (positive or negative):
D = 4:.5:7

D =

4.0000 4.5000 5.0000 5.5000 6.0000 6.5000 7.0000

or
D = 7:-.5:4

D =

7.0000 6.5000 6.0000 5.5000 5.0000 4.5000 4.0000

4.3 Matrix Concatenation

Matrix concatenation is the process of joining one or more matrices to make a new
matrix. The brackets [] operator discussed above serves not only as a matrix
constructor, but also as the concatenation operator. The expressions C = [A B] or
C = [A,B] horizontally concatenates matrices A and B. The expression C = [A;B]

vertically concatenates them. E.g.

E = [A;C]

Caution: Horizontal concatenation requires an equal number of rows, and vertical
concatenation requires an equal number of columns.

An alternative to using the [] operator for concatenation are the three functions
cat, horzcat, and vertcat. For example, the following commands give the same
result as E = [A;C]:

University of Oxford 19 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/colon.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/cat.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/horzcat.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/vertcat.html

MATLAB: A Comprehensive Introduction

E = cat(1,A,C)

E = vertcat(A,C)

Another useful concatenation function is repmat, which creates a matrix composed
of tiled copies of a smaller matrix. For example,

F = [1,2,3;4,5,6];

G = repmat(F,2,3)

replicates the matrix F two times vertically and 3 times horizontally.

G =

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6

4.4 Matrix Indexing

To reference a single element in a matrix, you can use either row-column index-
ing, A(row,column), or linear indexing A(ind), where matrix elements are counted
downward through successive columns.

A =

6 3 2 8

5 1 3 7

1 6 7 2

4 5 4 1

A(3,2), A(7)

ans =

6

To convert between index styles, use sub2ind and ind2sub, where sub refers to
row-column indexing. E.g.

linearindex = sub2ind(size(A),3,2)

linearindex =

7

IT Learning Centre 20 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/repmat.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sub2ind.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ind2sub.html

MATLAB: A Comprehensive Introduction

Accessing Sequential Elements: The Colon Operator Returns

With either row-column or linear indexing, a single index can be replaced by an
integer-valued numeric sequence to specify multiple elements.

A(2,1:3)

ans =

5 1 3

A(1:3:16)

ans =

6 4 6 3 8 1

A(2:3,1:3)

ans =

5 1 3

1 6 7

In indexing, the keyword end designates the last element in a particular dimension.
A(2,2:end)

ans =

1 3 7

The colon by itself refers to all elements.
A(2,:)

ans =

5 1 3 7

A(:)

ans =

6

5

1

4

3

...

For non-sequential access, an integer-valued matrix can also be used for indexing.

A([1,4,9])

ans =

6 4 2

Logical true and false states are represented in MATLAB as 1 and 0, respectively
(see section 3). Logical values can be used for matrix indexing in MATLAB and
this is an efficient and general method for selecting arbitrary matrix elements. A
logical indexing matrix is normally the same size as the matrix being accessed and
the indexing operation here is based on the position of true values in the indexing
matrix. In the following example, we use logical indexing to blank out the smaller
values in A.

University of Oxford 21 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/end.html

MATLAB: A Comprehensive Introduction

L = A<5

L =

0 1 1 0

0 1 1 0

1 0 0 1

1 0 1 1

A(L) = 0

A =

6 0 0 8

5 0 0 7

0 6 7 0

0 5 0 0

4.5 Matrix Information

Various built-in functions in MATLAB reveal information about matrices. The
following functions return information regarding matrix size and shape:

size The length of each dimension.
length The length of the longest dimension.
numel The total number of elements.

Here are a few examples:

size(F)

ans =

2 3

length(F)

ans =

3

numel(F)

ans =

6

Size and length are particularly useful and frequently used functions.

Certain functions test the data type of a matrix, returning a logical value to indi-
cate the result (see section 3). These include the generic isa function and specific
functions such as isfloat, isinteger, isnumeric, and islogical.

Other functions test the structure of a matrix, such as isvector, isscalar and
isempty. These function are useful for avoiding errors caused by special cases. For
example, say you have a program designed to perform an operation on paired data
stored in a 2-by-N matrix, where N may vary. In the general case, with N > 1, we

IT Learning Centre 22 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/size.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/length.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/numel.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isa.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isfloat.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isinteger.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isnumeric.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/islogical.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isvector.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isscalar.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isempty.html

MATLAB: A Comprehensive Introduction

could use length to determine the number of data pairs, but this approach may fail
for N = 1 (where length is 2), and N = 0 (where length is 0). Calls to isvector

and isempty could check for these special cases.

4.6 Matrix Resizing

Matrices in MATLAB can be dynamically resized provided the resulting matrix
remains rectangular.

Matrix expansion can be achieved via concatenation as introduced above. Alterna-
tively, it is possible to write to a location outside the current bounds of a matrix.
In this case, MATLAB automatically pads it with zeros where a row or column is
not completely specified. For example:

F = [1,2,3;4,5,6];

F(1,5) = 3

F =

1 2 3 0 3

4 5 6 0 0

You can add a block of numbers in the same way:

F = [1,2,3;4,5,6];

F(1:2,5:6) = 8

F =

1 2 3 0 8 8

4 5 6 0 8 8

Conversely, you can delete rows and columns from a matrix by assigning the empty
array [] to those rows or columns.

F(:,6) = []

F =

1 2 3 0 8

4 5 6 0 8

University of Oxford 23 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isvector.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isempty.html

MATLAB: A Comprehensive Introduction

4.7 Matrix Reshaping and Shifting

The following functions modify matrix shape or ordering

flipud Flip matrix in up/down direction.
fliplr Flip matrix in left/right direction.
flipdim Flip matrix in the specified direction (1 for up/down).
rot90 Rotate matrix anti-clockwise by 90 degrees.
transpose Flip matrix about its main diagonal, turning row vectors into

column vectors and vice versa. This is equivalent to the .’
operator (for more on operators see section 5).

reshape Modify the shape of a matrix. B = reshape(A,m,n) returns
the m-by-n matrix B whose elements are taken column-wise
from A. An error results if A does not have m*n elements.

circshift Circularly shift matrix contents.

Here are a few illustrative examples:

F = [1,2,3;4,5,6]

F =

1 2 3

4 5 6

fliplr(F)

ans =

3 2 1

6 5 4

transpose(F)

ans =

1 4

2 5

3 6

reshape(F,3,2)

ans =

1 5

4 3

2 6

circshift(F,[0,1])

ans =

3 1 2

6 4 5

IT Learning Centre 24 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/flipud.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fliplr.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/flipdim.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rot90.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/transpose.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/reshape.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/circshift.html

MATLAB: A Comprehensive Introduction

4.8 Matrix Sorting

The MATLAB sort function sorts matrix elements along a specified dimension,
using sort(A,1) to sort along columns and sort(A,2) to sort along rows. As with
many built-in functions, omitting the specified dimension causes the function to
operate column-wise, i.e. sort(A) is equivalent to sort(A,1).

A = [6 3 2 8; 5 1 3 7; 1, 6, 7, 2;4,5,4,1]

A =

6 3 2 8

5 1 3 7

1 6 7 2

4 5 4 1

sort(A)

ans =

1 1 2 1

4 3 3 2

5 5 4 7

6 6 7 8

sort(A,2)

ans =

2 3 6 8

1 3 5 7

1 2 6 7

1 4 4 5

By default, sort sorts in ascending order, but an additional argument can be used
to specify descending-order sorting:

sort(A,2,’descend’)

ans =

8 6 3 2

7 5 3 1

7 6 2 1

5 4 4 1

sortrows keeps elements of each row in its original order, but sorts the rows accord-
ing to the order of the elements in a specified column (the first by default).

sortrows(A)

A =

1 6 7 2

4 5 4 1

5 1 3 7

6 3 2 8

University of Oxford 25 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sort.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sort.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sortrows.html

MATLAB: A Comprehensive Introduction

Exercise 4. Introduction to Matrices
• Create a matrix
• Matrix concatenation
• Matrix information
• Matrix indexing
• Matrix resizing and sorting

Key Functions [], zeros, ones, cat, horzcat, vertcat, length,
size, numel, clc, transpose, reshape, sort

Task 1
Create a matrix

Step 1
Create a matrix A of 3 rows and 3 columns using the
matrix constructor operator [], and assign random
numbers to each element.
Step 2
Create a matrix B of 3 rows and 2 columns, in which
all elements are all ones.
Step 3
Create a matrix C of 2 rows and 5 columns, in which
all elements are all zeros.

Task 2
Matrix concatenation

Step 1
Concatenate matrices A and B horizontally into a new
matrix D. Display the resulting matrix in the command
window.
Step 2
Concatenate matrices C and D vertically into a new ma-
trix E. Display the resulting matrix in the command
window.

Task 3
Matrix information

Step 1
Using already available MATLAB functions identify the
size of matrix E and make sure that the output is the
expected one. Display the number of rows, columns
and the total number of elements in the matrix.

Task 4
Matrix indexing

Step 1
Clear your command window using clc command. Dis-
play matrix E on your command window.
Step 2
Display the element in the 2nd row and 3rd column of
matrix E. Make sure that the result is the expected one.
Step 3
Display all the elements in the 2nd row.
Step 4
Display all the elements in the 3rd column.
Step 5
Display the elements in the 2nd row from the 3rd column
until the last column of matrix E.

IT Learning Centre 26 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/[].html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/zeros.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ones.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/cat.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/horzcat.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/vertcat.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/length.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/size.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/numel.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/transpose.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/reshape.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sort.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/[].html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clc.html

MATLAB: A Comprehensive Introduction

Task 5
Matrix resizing and sorting

Step 1
Create a matrix F that is actually part of matrix E.
More specifically F should consist of the rows 2 until 4
and columns 1 until 4 of matrix E.
Step 2
Identify the size of each dimension of the new matrix F

and display them on the command window.
Step 3
Assuming now that matrix F has m rows and n columns,
reshape matrix F in order to have n rows and m
columns.
Step 4
Create a matrix G that will be matrix F sorted along
column in a descending order.

Exercise 5. Magic Matrices
• Create a magic square
• Replicate the magic square
• Restore the original square

Key Functions magic, sum, diag, repmat, isequal, reshape

Task 1
Create a magic square

Step 1
A magic square is a square matrix which has the special
properties that if you take the sum along any row, col-
umn or either main diagonal, you get the same result.
Step 2
Open a new script in the Editor. The first line should
create a magic square of size 3, using the magic func-
tion as follows: A = magic(3). Save the script as
magic matrices.m on the H drive, and run the script.
Step 3
Add lines to the script to verify that the rows, columns
and main diagonal of the square add up to the same
number using sum and diag. Use help and doc to un-
derstand these functions. You can nest commands as
in Exercise 2.

Task 2
Replicate the magic square

Step 1
Add lines using repmat to tile A four times vertically
and two times horizontally, assigning the output to B

(B = repmat(A,...)). See section 4.3 for guidance.
Step 2
Check the row, column and diagonal sums of B.
Step 3
Replicate B, one time vertically and two times horizon-
tally, assigning the output to C. Is C magic?

University of Oxford 27 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/magic.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sum.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/diag.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/repmat.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isequal.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/reshape.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/magic.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sum.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/diag.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/repmat.html

MATLAB: A Comprehensive Introduction

Task 3
Restore the original square

Step 1
After running the script created so far, look at the el-
ements of A, B and C in the Command Window (type
in the variable name and press Enter).
Step 2
The original magic square (A) can be extracted from C

using row-column sequential indexing. Try it, assigning
the output to (D). See section 4.4 for guidance.
Step 3
Add a line to verify that D is equal to A using isequal.
Step 4
The elements of A can also be extracted from C using
linear indexing, taking every 4th value starting from 1
and ending at a suitable number to extract 9 elements
in total. Try this and assign the output to E. Consider
how you could convert E into the original magic square
form and test this in your script.

IT Learning Centre 28 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isequal.html

MATLAB: A Comprehensive Introduction

5 Operators and Control - How to tell a computer what
to do

Operators and control statements add power and flexibility to MATLAB pro-
grams. Operators are used to perform arithmetic, numerical and logical operations,
using program statements that are concise and easy for a person to read.

Conditional Statements and Loops control program flow.

Analogy: Baking a Cake

You may have all the ingredients to make a cake. However, to make the cake
you need to mix the ingredients together in certain quantities, in a certain order,
and bake it for a specified amount of time. From a programming perspective,
‘Operators’ would be used to specify how you add the ingredients together. These
include:
Arithmetic: Add the sugar and flour
Relational: Use an amount of milk equal to the amount of water
Logical: Use either chocolate or caramel in the sauce
On the other hand, ‘Control Statements’ would specify the flow of ingredients and
the time of cooking. These include:
Conditionals: If the mixture has risen, remove the cake
Loops: While the cake is cooling, prepare the icing

5.1 Arithmetic Operators

The general form of an arithmetic operator statement is:

operand1 operator operand2

There are two major types of arithmetic operations. Array operations are carried
out element by element and the operand matrices must be of the same size, unless
one is scalar. Matrix operations are defined by the rules of linear algebra. The
full stop character (.) distinguishes the array operations from the matrix operations.
For addition and subtraction, the matrix and array operations are the same, and
here the full stop is not used. Tip: It is a common error to confuse matrix and array
operators. Always consider which you should be using in a given situation. Below
is a brief summary. For further details, look here.

University of Oxford 29 IT Learning Centre

http://www.mathworks.com/help/techdoc/matlab_prog/f0-40063.html
http://www.mathworks.co.uk/help/matlab/control-flow.html
http://www.mathworks.co.uk/help/matlab/matlab_prog/conditional-statements.html
http://www.mathworks.co.uk/help/matlab/matlab_prog/loop-control-statements.html
http://www.mathworks.com/help/techdoc/ref/arithmeticoperators.html

MATLAB: A Comprehensive Introduction

+ and - Addition and subtraction. A+B adds A and B. A-B subtracts B from A.
.* Array multiplication. A.*B is the element-by-element product of the

arrays A and B.
.^ Array power. A.^B is the matrix with elements A(i,j) to the B(i,j)

power.
./ Array right division. A./B is the matrix with elements A(i,j)/B(i,j).
.\ Array left division. A.\B is the matrix with elements B(i,j)/A(i,j).
* Matrix multiplication. A*B is the linear algebraic product of A and B.

For nonscalar A and B, the number of columns of A must equal the
number of rows of B.

^ Matrix power. In the non-scalar power case, the calculation here in-
volves eigenvalues and eigenvectors.

/ Matrix right division. B/A = (A’\B’)’.
\ Matrix left division. X = A\B is the solution to the equation AX = B.

5.2 Relational Operators

Relational operators share the same general form as arithmetic operators, and
are used to compare operands quantitatively, using operators like “less than”. Like
array arithmetic operators, relational operators always operate element-by-element.
If one operand is scalar, it is expanded to the size of the other operand. These
operators return a logical array reflecting the outcome of the relational test. Here
is a summary:

< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
~= Not equal to

Tip: One equals symbol is used for assignment, while a pair is used for testing
equality. Be careful not to confuse the two.

5.3 Logical Operators

Logical operators perform logical calculations and return logical values. When
the operands are non-logical numerical data types, zeros are treated as false while
all non-zeros are true. Logical operators come in two main types: element-wise for
arrays, and short-circuit for scalars. Here is a summary:

& Logical AND. A&B returns true (1) for every element location that is
true (nonzero) in both arrays, and false (0) for all other elements.

| Logical OR. A|B Returns true (1) for every element location that is
true (nonzero) in either one or the other, or both arrays, and false (0)
for all other elements.

~ Logical NOT. Complements each element of the input array. Nonzeros
become false while zeros become true.

&& Short-circuit AND
|| Short-circuit OR

IT Learning Centre 30 University of Oxford

http://www.mathworks.com/help/techdoc/ref/relationaloperators.html
http://www.mathworks.co.uk/help/matlab/logical-operations.html

MATLAB: A Comprehensive Introduction

For the short-circuit operators, if the outcome of the operation can be determined by
the value of the first operand, the second is not evaluated. This can be more efficient
in control statements (see below), and can also be used to avoid error conditions,
such as division by zero, by making the first operand a test for the error condition.
For example:

x = (b ~= 0) && (a/b > 2)

5.4 Conditionals

Conditional statements control program flow by selecting which blocks of code to
execute based on the value of test expressions. They allow a MATLAB program to
perform multiple tasks based on its inputs.

Analogy: If Statement

Let’s assume you are helping a friend move and he tells you to put full boxes in
the car but empty boxes in the bin. Your friend has created what is known as a
conditional in the form of an if statement, i.e. ‘If a box is full, put it in the car.
Otherwise put it in the bin’. if statements in programs are used in the same way.

if statements perform selection based on the value of a logical expression. In its
basic form, an if statement has this form:

if logical-expression

statements

end

The statements within the if statement are executed only if the logical expression
is true. Otherwise those statements are skipped, and execution continues following
the end line. For example:

if isprime(a)

disp(’prime number detected’)

end

Simple expressions can be combined by logical operators into compound expressions
(where short-circuit operation can be applied). For example:

if isprime(a) && a>100

disp(’Big prime number detected’)

end

If the logical expression evaluates to a nonscalar value (e.g. a vector), then all the
elements of the argument must be true (nonzero) for the expression to be evaluated
as true. Note also that if statements can be nested by putting one inside another.
The following example performs the same function as the preceding one:

University of Oxford 31 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/if.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/if.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/if.html

MATLAB: A Comprehensive Introduction

if isprime(a)

if a>100

disp(’Big prime number detected’)

end

end

For more complex conditional evaluations, the else and elseif statements can be
incorporated into an if statement. The general form here becomes:

if expression1

statements1

elseif expression2

statements2

.

.

.

else

statementsX

end

where any number of elseif groups can be used, and the else group is optional.
The code above will execute statements1 if expression1 is true. If expression1

is false, and expression2 is true, then statements2 will be executed. If none of the
elseif expressions are true, the statements under the else line will be executed.

IT Learning Centre 32 University of Oxford

MATLAB: A Comprehensive Introduction

Switch statements

switch statements select between multiple code blocks based on the value of a
single variable or expression (the switch). The basic form is:

switch expression

case value1

statements1

case value2

statements2

.

.

.

otherwise

statements3

end

In a switch statement, any number of case groups can be used, and the
otherwise group is optional. In MATLAB (unlike C), if any case statement
is true, subsequent cases are not evaluated or executed.

5.5 Loops

Loop control statements enable a code block to be repeatedly executed. There are
two loop types in MATLAB: for and while.

Analogy: For and While Loops

Now let’s assume your friend knows that he has three boxes. He may ask you to
take those three boxes to the car. From a programming perspective he has created
a for loop with three iterations, i.e. ‘Take Box 1 to the car, take Box 2 to the
car, take Box 3 to the car, then you are finished.’
However, if your friend did not know the number of boxes, he may ask you to take
the boxes to the car until there are none left. In that case he has created a while

loop, i.e. ’While there are still full boxes, take them to the car’.

for loops execute a code block a number of times determined on entry to the loop.
The syntax normally uses the colon operator introduced in section 4.

for index = start:increment:end

statements

end

University of Oxford 33 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/switch.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/for.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/while.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/for.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/while.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/for.html
http://www.mathworks.co.uk/help/matlab/ref/colon.html

MATLAB: A Comprehensive Introduction

for loops can be nested and this can be useful to access each element in a two-
dimensional matrix. However, nesting loops in MATLAB can result in slow code
execution, especially for nesting beyond two levels. Fortunately, there are ways to
avoid using heavily nested loops in many circumstances, and we will look at this in
section 11.

while loops repeat execution of a block of code as long as a test expression is true.

while expression

statements

end

To avoid infinitely-repeating while loops, one or more statements inside the loop
must change the value of the test expression (although see the break statement
below). This is in contrast to the for loop, where the statements inside the loop do
not generally affect the number of loop repeats. Compare:

n=10

for i=1:n

i

n=n-1

end

n=10

while n>0

n=n-1

end

continue and break

continue and break statements can be used to interrupt the ongoing repeats in
a loop. The continue statement immediately passes control to the next repeat
of the loop in which it appears, skipping any remaining statements in the body
of the loop. The break statement terminates the execution of a loop and passes
control to the point following the end line in the loop.

In nested loops, continue and break statements only apply to the innermost loop
containing that statement.

Good programming practice would be to limit the use of continue and break

commands in code as they cause discontinuous jumps that are often difficult to
follow, especially when looking through large programs.

IT Learning Centre 34 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/continue.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/break.html

MATLAB: A Comprehensive Introduction

5.6 Return and Keyboard

return and keyboard statements interrupt the execution of a MATLAB program.
A return statement immediately exits a running program or function, returning
control to either the keyboard or the function/script that called it (depending on
how the function was called).

A keyboard statement suspends program execution at the point where it is en-
countered, and gives control to the keyboard. Keyboard mode is indicated by a K

appearing in front of the usual command prompt. This allows the user to examine
and change variable values at any point in a running MATLAB program and can be
very useful for debugging code. Keyboard mode is terminated by entering return

at the keyboard.

University of Oxford 35 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/return.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/keyboard.html

MATLAB: A Comprehensive Introduction

Exercise 6. Control Statements - Basic Concepts
• Create a 2D matrix
• Matrix scanning and selective display

Key Functions rand, for, length, size

Task 1
Create a 2D matrix

Step 1
Using the rand function create a 2-dimensional matrix
with 3 rows and 4 columns and assign it to a variable.
Step 2
Display the whole matrix. Assuming you do not know
the dimensions of the matrix, choose a function that
will provide you with this information, apply it to your
matrix, display the result, and make sure it is the ex-
pected one.

Task 2
Matrix scanning and selective
display

Step 1
Imagine you want to see the individual elements of your
matrix displayed on the command window one-by-one.
Using a for loop, display on the command window ev-
ery element of the first column of your matrix one-by-
one (i.e. first display the element in row 1 column 1,
and then display the element in row 2 column 1, etc.).
If you do not remember how to index specific elements
of a matrix, please read section 4.4 again. Also consider
how you would define the start and end in the syntax of
the for loop, assuming you do not know the dimensions
of the matrix you scan.
Step 2
Using two for loops, one inside the other, display all
the elements of your matrix. The first for loop will go
through the columns and the second through the rows
of the matrix.
Step 3
Now, instead of displaying all the elements of the ma-
trix, display only those that are larger than 0.5. Con-
sider using the if-else statement within the scanning
code you have created in step 2 in order to examine the
value of an element and then display it according to the
above criterion.

Exercise 7. Fibonacci Numbers
• Open M Files
• Sum of Fibonacci numbers - Part I
• Sum of Fibonacci numbers - Part II

Key Functions for, while, disp, num2str

IT Learning Centre 36 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rand.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/for.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/length.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/size.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rand.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/for.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/while.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/num2str.html

MATLAB: A Comprehensive Introduction

Task 1
Open M File

Step 1
Change directory to where your Matlab files are stored,
and open Fibonacci Sequence.m. This script is the ba-
sis of the exercise

Task 2
Sum of Fibonacci numbers
Part I

Step 1
The first six numbers of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5. In order to calculate each number Fn
of the sequence, the previous two numbers, Fn-1 and
Fn-2 are required. The formula is: Fn = (Fn-1) + (Fn-
2). Create a matrix F that will contain the Fibonnaci
sequence and fill the first two elements with 0 and 1
respectively.
Step 2
Create a for loop that will calculate the first 20 num-
bers of the Fibonacci sequence. Every time a new num-
ber is calculated it must be displayed on the command
window.
Step 3
Create a variable called ‘sumFib’ that will contain the
sum of the calculated Fibonacci numbers. Initialize (i.e.
set the initial value of) this variable to 0. Every time a
new number from the Fibonacci sequence is calculated
within the for loop, this variable will be updated by
adding the new number.
Step 4
When the for loop terminates, display a message re-
garding the sum of the first 20 Fibonacci numbers.
Consider using the function disp, as well as num2str

to transform the value of the ‘sumFib’ variable into a
string in order to be incorporated in the displayed mes-
sage.

Task 3
Sum of Fibonacci numbers
Part II

Step 1
Copy the Fibonacci Sequence.m script and rename it
into Fibonacci Sequence2.m
Step 2
Replace the for loop with a while loop that will again
calculate the Fibonacci numbers, add them, and save
the result in the variable ‘sumFib’. The while loop
should stop executing once the summation of Fibonacci
numbers exceeds 1000.
Step 3
When the while loop terminates, display a message
regarding the sum of the Fibonacci numbers calculated
so far, as well as the number of the Fibonacci numbers
required to reach the termination criterion of the ’while’
loop. In order to achieve this, consider defining a new
variable that will act as a counter of the ’while’ loop
iterations. The new variable must be updated in each
iteration of the loop.

University of Oxford 37 IT Learning Centre

MATLAB: A Comprehensive Introduction

Exercise 8. Roots of quadratic equation
• Open M Files
• Quadratic equation roots Part I
• Quadratic equation roots Part II

Key Functions if-else, switch, disp, num2str

Task 1
Open M Files

Step 1
Open Quad Equation Roots.m in your Matlab files di-
rectory. This script is the basis of the exercise.

Task 2
Quadratic equation roots

Step 1
The roots of a quadratic equation ax2 + bx + c = 0
depend on the value of the discriminant D, which is
defined as D = b2 − 4ac. Define the variables a, b, c
and initialize them with random values.
Step 2
Calculate the discriminant D.
Step 3
If D>0, the equation has two real roots. If D = 0,
the equation has one real root. Finally, if D<0, it has
no real roots. Use conditional statement if else to
display a message in each case indicating the number
of the equations roots.
Step 4
The general form of the quadratic equation roots is x =
−b±

√
b2 − 4ac

2a
. In the case where there is at least one

real root, calculate the corresponding roots and display
them along with the previous message.

IT Learning Centre 38 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/if-else.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/switch.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/num2str.html

MATLAB: A Comprehensive Introduction

6 Programming - How to organise your code

Rather than entering commands into MATLAB one at a time at the command line,
you can also write a series of commands to a program file that you then execute as
you would any MATLAB function.

We already explored some programming essentials in section 2.2.6 and exercises 2-4.
In particular, we introduced both the MATLAB Editor, and the simplest kind of
MATLAB program file (M-file): the script. In this section we will go into a little
more detail.

In actual fact, there are two kinds of M-file:

• Scripts, which do not accept input arguments or return output arguments.
They operate on data in the workspace.

• Functions, which can accept input arguments and return output arguments.
They operate in private workspaces: internal variables are local to the
function. This means a variable created inside a function only exists within
the function and cannot be accessed once the function has finished (reached
the return command).

6.1 Scripts

Scripts are simply a list of commands stored in an M-file. When you invoke a script,
MATLAB executes the commands found in the file. The result is exactly the same
as if the commands were entered one-by-one in the command window.

Scripts share the base workspace with your interactive MATLAB session and with
other scripts. They operate on existing data in the workspace, or they can create
new data on which to operate. Any variables that scripts create remain in the
workspace after the script finishes so you can use them for further computations.

6.2 Functions

Functions are program files that can accept input arguments and return output
arguments. The names of the file and of the function must be the same.

Each function operates on variables within its own workspace, which is separate from
the workspace you access at the MATLAB command prompt. The input arguments
are the initial contents of the private function workspace, and the output arguments
are what is returned to the workspace from which the function was called. Since
functions can call functions, there can be a hierarchy of separate, private workspaces.

University of Oxford 39 IT Learning Centre

MATLAB: A Comprehensive Introduction

Analogy: The Lawyer Function

Generally we go to see a lawyer if we need legal advice, a doctor if we are sick,
and a hairdresser for a haircut. These people all do specific things, i.e. they have
a specific function. In a similar way in programming we can create independent
pieces of code called functions that perform certain jobs. Let’s assume we have a
‘Lawyer’ function. When meeting a lawyer you may take certain documentation
with you. This documentation would be called an ‘Input Argument’ to the ‘Lawyer
Function’. The lawyer would then perform some legal analysis, and may even give
you some results. The results are what the ‘Lawyer Function’ returns.

6.3 Script Components

To study the components of a script, we will look at tutorial script1.m.

6.3.1 Comments

The first lines of the file are preceded by percent symbols, which in MATLAB
denote comments. A comment is a message to someone reading or editing the M-
file and the text is not interpreted as code by MATLAB. The first paragraph of
comments at the top of an M-file is used to explain the intended usage of the script
or function. These comments are also harvested for the MATLAB help system:
help tutorial script1.

Additional comments should be used in the body of the file to explain particular
sections or lines of code. Finally, comments are also useful for temporarily disabling
a piece of code during development. This is referred to as ‘commenting out’ code.

6.3.2 Housekeeping Code

Below the first help paragraph is a section of housekeeping code, used to keep the
MATLAB workspace and display area tidy. In the tutorial example, we use clear

to clean up the workspace, close to close figures, and home to tidy up the command
window. A commented out line gives the option of using clc instead of home.

Usually housekeeping code goes at the start of a program to ensure that the figures
shown and values in the variables are not left over from a different program.

6.3.3 Script Body - drawing a circle

The script body is the main subsection of executable code. Here it draws a circle,
using built-in MATLAB trigonometric functions.

• First, the centre co-ordinates and radius of the circle are declared and re-
ported using disp.

IT Learning Centre 40 University of Oxford

http://www.mathworks.co.uk/help/matlab/matlab_prog/comments.html
http://www.mathworks.co.uk/help/matlab/learn_matlab/help.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clear.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/close.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/home.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/home.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html

MATLAB: A Comprehensive Introduction

• Next, a vector (theta) of N=1000 parameter values is created, evenly spaced
between 0 and 2pi. The standard parametric equations for a circle are
applied to calculate x and y co-ordinate pairs for the perimeter of the circle.

• Finally, the circle is plotted in a figure window, and modified to display in
the correct aspect ratio, using axis. pause is one way of interrupting pro-
gram flow, and potentially requiring human interaction with the program.

Running the script There are two main ways to run a script in MATLAB.

1. From the Command Window, you can enter the script name. Note, this
only works if the script is either in the current folder or the path.

2. From the Editor, you can press F5, or click the Run button (which features
a green ’play’ triangle).

6.4 Function Components

To study the components of a function, open up tutorial fun1.m in the Editor. This
function performs the same operations as tutorial script1.m but is more flexible by
allowing for input arguments.

6.4.1 Function Declaration

In MATLAB, function is a special function used to declare all other functions. The
function declaration must be the first executable line of any MATLAB function, and
follows the form:

function [out1, out2, ...] = myfun(in1, in2, ...)

tutorial fun1.m has inputs called C, R and FIG, and an output called CIRCLE.

6.4.2 Help Comment Block

The help comment block is the first paragraph of comments in the function, and
normally follows the function declaration. In tutorial fun1, the help comment block
is written in the general form of standard MATLAB functions. Compare:
help tutorial fun1, help fliplr.

It is good practice (but not essential) to write help comment blocks in this form.

6.4.3 Function Body

The body of tutorial fun1 is similar to that of tutorial script1. Both script and
function perform the same basic task but there are differences:

• The calls to disp and pause have been removed in the function

University of Oxford 41 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/axis.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/pause.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/function.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/pause.html

MATLAB: A Comprehensive Introduction

• In the script, the centre co-ordinates, radius and figure number are declared
as constants, while in the function they are read in as input arguments

• In the function, a line has been added to form the output matrix

Running the function

Unlike scripts, functions generally need to be provided with input arguments.
These can be entered manually in the Command Window, or the function can be
called from another script or function (more on this below).

If you try to run a function from the Editor, MATLAB will usually report an
error since, by default, the input arguments are not specified here. However, it
is possible to create default run conditions by editing the run configuration in
the Editor. This is accessed via a drop-down menu next to the run button. By
opening this dialogue, and copying in the example code from the comment block,
we can run the function using the example argument values.

6.5 Modular Programming

A useful MATLAB program will often need to be more complex than the simple
cases explored above. Rather than creating a large script or function that tries to
do multiple tasks, it is generally more efficient to construct a modular program from
simple building blocks. To see how this can be achieved, open tutorial script1b.m.

This example script begins with a brief help comment subsection followed by a
standard housekeeping subsection. In the script body, we see the introduction of
the input function, which is a way of introducing user interaction into a running
program. When input is called, the user is asked to enter input via a prompt string.

Below input, we see two lines calling tutorial fun1 with different inputs. Prior to
the first function call, there is a call to hold, which enables subsequent graphical
commands to be added to an existing plot.

The second function call is inside a for loop, which here means run what is inside
the loop n times with index i increasing from 1 to n, in increments of one.

IT Learning Centre 42 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/hold.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/for.html

MATLAB: A Comprehensive Introduction

Figure 6.1: Example modular program output.

6.6 Toolboxes

MATLAB Toolboxes are specialized sets of functions serving a wide variety of pur-
poses, including data analysis, data acquisition, signal and image processing, par-
allel computing, statistical data analysis, controller design and implementation.
Depending on the MATLAB license there are different toolboxes available. To
view installed toolboxes, use the ver command. Then by using the help com-
mand along with the toolbox directory name, a list of the functions available in the
specific toolboxes is produced. The available MATLAB toolboxes are listed here:
http://uk.mathworks.com/products/

University of Oxford 43 IT Learning Centre

http://uk.mathworks.com/products/

MATLAB: A Comprehensive Introduction

Exercise 9. Function for roots of quadratic equation
• Create M Files
• Main body of the function
• Calling the function

Key Functions if-else, switch, disp, num2str

Task 1
Create M Files

Step 1
Create a new M File and name it quadEquationRoot.m.
Step 2
Within the M File define a MATLAB function accord-
ing to the form: function [out1, out2, ...] = quadE-
quationRoot(in1, in2, ...). The inputs of the function
should be the coefficients of the quadratic equation, and
the output should be an array that will contain the
equations roots.

Task 2
Main body of the function

Step 1
Copy the part of the Quad Equation Roots.m script
that calculates the discriminant and the roots of the
quadratic equation into the main body of the function.
Do not include the part of the code responsible for dis-
playing messages.
Step 2
Assign the calculated roots to the elements of the out-
put array. Consider specifically the case where there
are no roots.

Task 3
Calling the function

Step 1
Using random inputs call the ‘quadEquationRoot’ func-
tion from the command window and display the output.
Step 2
An alternative way to call the function is through an M
File. Create a new M File and name it CallQuadEqua-
tionRoot.m. Within this file define again the required
inputs, call the function ‘quadEquationRoot’, and dis-
play a message that will include the roots calculated, if
any.

IT Learning Centre 44 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/if-else.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/switch.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/num2str.html

MATLAB: A Comprehensive Introduction

Exercise 10. Noughts and Crosses
• Open M Files
• The players choose their symbols
• The game begins

Key Functions if-else, switch, disp, return, for, while

Task 1
Open M Files

Step 1
Change directory to where the Noughts and Crosses
files are and open the XandO.m script. This script is
the basis of the exercise.
Step 2
Take some time to understand the structure of the code
according to the guidelines/comments in the code.

Task 2
The players choose their
symbols

Step 1
Using the function ‘input’ the program must ask from
the first player to provide a string (‘x’ or ‘o’) that will
correspond to this players symbol. This string must
be saved to a variable, and this variable must be then
used in a conditional statement to determine the second
players symbol.

Task 3
The game begins

Step 1
After a player has chosen a square on the board, the
program must check if this square is empty. An empty
square on the ‘board’ matrix has the value ‘e’. Con-
sider applying a control statement that will place the
players symbol at the specified position on the board
if this position is empty. If it is not empty, a relevant
message should be displayed and the program must be
terminated.
Step 2
At this step the symbol of the current player must be
drawn on the board. The function ‘drawSymbol’ in
your current folder can be used for this purpose. Then
the available squares on the board must be reduced by
one.
Step 3
A check on the board must be performed to determine
whether there is a winner. In order to do this, use the
function ‘checkWin’ in your current folder. Make sure
you provide the right inputs and outputs. If the output
of the above function is equal to 1, this means that the
current player is the winner, a relevant message must
be displayed and the program must be terminated.

University of Oxford 45 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/if-else.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/switch.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/return.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/for.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/while.html

MATLAB: A Comprehensive Introduction

Step 4
Steps 1-3 must also be followed when the second player.
Make sure you copy this code at the right place and
make the necessary changes in the variables and mes-
sages to be displayed so that they correspond to the
second player.
Step 5
The board has a limited number of squares, 9 specif-
ically. So far, the program allows each player to play
only once. In order for the game to continue, one player
must play after the other and the criteria for the game
termination should be either to have a winner or to
fill completely the board. Since now only one round
of the game has been implemented in the code, a loop
needs to be introduced that will allow repetitive rounds
as long as the criteria for the termination of the game
have not been satisfied. Hint: Consider using the ’avail-
able squares’ variable, which is updated every time a
player finishes their round, as a criterion to the loop.

IT Learning Centre 46 University of Oxford

MATLAB: A Comprehensive Introduction

7 Error Handling - How do deal with things that go
wrong

7.1 Errors

Typically, in MATLAB code several types of errors might occur. Some of the main
classes of errors are described here.

7.1.1 Typographical Errors

These errors are very easy to identify, and are caused by misspelling of a command
or a variable that could lead to either an error message returned by MATLAB or
unpredictable results. Where MATLAB can return an error message, it will show a
sentence in red starting with Undefined function or variable ’x’

.

7.1.2 Syntax Errors

These errors occur when the syntax used to call a function or to use an operator is
incorrect. In these cases, MATLAB provides you with an error message indicating
the location and type of error. Syntax Errors may include:

• Parenthesis Errors - This error indicates too many or too few brackets
have been used. Errors of this form usually read Error: Expression or

statement is incorrect--possibly unbalanced (, or [but could also
say Error: Unbalanced or misused parentheses or brackets.

• String Errors - These errors indicate that either a variable is of the incorrect
type or is used incorrectly, and may read Only input must be numeric

or a valid numeric class name. Another straightforward string error
would be leaving off an inverted comma, for example writing A = ‘Hello

and pushing enter. In this case MATLAB will return an error along the lines
of Error: A MATLAB string constant is not terminated properly.

Other common syntax errors may include incomplete expressions, as in x = 1+2+ in
which case MATLAB returns Error: Expression or statement is incomplete

or incorrect. You may also try and use a character that is non-standard for
MATLAB (such as just typing ‘), in which case the error reads Error: The input

character is not valid in MATLAB statements or expressions.

7.1.3 Array Indexing and Assignment Errors

Array indexing errors typically occur if you try to access a position that is ouside
the bounds of an array. For example, if an array is defined as A = [1, 2, 3];

and you try to access position four by writing A(4), MATLAB will give an error
reading Index exceeds matrix dimensions. Similarly, because the first index in
a MATLAB array is always 1 (not 0), if you try to write A(0) you will also get an
error reading Subscript indices must either be real positive integers or

University of Oxford 47 IT Learning Centre

MATLAB: A Comprehensive Introduction

logicals. Array indexing errors often happen in for loops when the loop counter
runs higher than the largest array index.

On the other hand, if you try to perform arithmetic operations on matricies of
different sizes you may receive an error reading Matrix dimensions must agree or
Subscripted assignment dimension mismatch. Another assignment error occurs
when you try to use a single = sign in an equivalence statement instead of ==.
For example, writing if x = 3 returns Error: The expression to the left of

the equals sign is not a valid target for an assignment.

7.1.4 Algorithmic Errors

These errors occur when there is an error in the process followed by the MATLAB
code to produce the desired result. These errors are quite difficult to detect since
MATLAB does not provide error or warning messages. One way to detect them is to
go through the code step-by-step and compare each steps result with the expected
one. This can be done with a debugger.

Manual Error Detection It is often good programming practice to perform

checks throughout the program to ensure that the program is performing as ex-
pected. One such way to do this is to display certain variables so that you can
manually check that they have an expected value during program execution. An-
other way is to use an if statement to validate your data. For example, if you are
writing a calendar program to keep track of the days in a month, you know that
the value of a day must be somewhere between 1 and 31. Thus you can write the
following if statement to check, where calDay is the variable:
if calDay >= 1 && calDay <= 31

‘Everything Okay’

else

‘Something has gone wrong - the day is too large or too small’

end

This will allow you to quickly see whether the program is functioning correctly,
especially if the day counter is only a small part of a much larger program.

7.2 Debugging

While manual error checking is useful, sometimes it is still very difficult to detect
where an error in from, and in these cases MATLAB provides a useful set of tools
known as a debuggers. These tools allow you to step through single lines or blocks of
code to identify an error. There are several debugging tools available in MATLAB,
and in this section the most commonly used are presented:

7.2.1 Debugging in the MATLAB editor

Using MATLAB GUI tools: In order to go through a part of a MATLAB code,
a breakpoint can be used that stops execution of a program at a specified line.

IT Learning Centre 48 University of Oxford

MATLAB: A Comprehensive Introduction

Breakpoints are marked as red-filled circles right next to the number of a line, and
can be applied in two ways:

• By left-clicking on the dash line next to the number of the line where we
want the breakpoint to be placed.

• By placing the cursor anywhere on the desired line and then clicking Editor
→ Breakpoints → Set/Clear (or pressing F12 on the keyboard).

When the user runs a program, the execution will stop at the line where the first
breakpoint is placed. Then the user has the following options:

• Click Continue: the execution will continue until the next breakpoint is
met. If there are no breakpoints later in the code, the program will execute
until it terminates.

• Click Step: when this option is chosen, the current line of the program
will be executed and the execution will stop at the next line. This button
provides the user with a way of investigating step-by-step the functionality
and results of the code.

• Click Step In: This option provides you access to the content of a function
called at the line where the execution of the program currently is. Then by
using Step, the user can go through each line of this function.

• Click Step Out: This option allows the user to step out of a function that

University of Oxford 49 IT Learning Centre

MATLAB: A Comprehensive Introduction

has previously stepped in without executing some or all of the lines in this
function.

• Click Quit Debugging: This option terminates program execution and al-
lows the user to access the command prompt, and edit the m-files.

Using a try / catch block A special case of debugging is the try/catch block, and
its structure is shown below.

try

some code

catch

error handling code

end

This block is used to capture errors in specific lines in the code whose execution is
expected to fail under specific circumstances, and avoid failure of the entire program.
The part of the code that is right after the try section corresponds to the code being
executed and checked for errors, and the part of the code that is after the catch

section corresponds to the code being executed when an error has been captured.

7.2.2 Debugging in the MATLAB command prompt

Similarly to the MATLAB Editor Breakpoints menu, debugging can be performed
using specific commands in the command window. A subset of the available com-
mands is briefly described in this section.

• dbstop in file: to set a breakpoint at the first possible line in the file.

– dbstop in file at location: to set a breakpoint at the specified location
in the file.

– dbstop in file if expression: to set a breakpoint at the line in the file
where this expression exists.

– dbstop if condition: to pause execution at the line that satisfies the
condition.

• dbclear: to clear all the breakpoints

– dbclear all: to remove all breakpoints in all files.

– dbclear in file: to remove all breakpoints in the file.

• dbquit: to terminate program execution and exit debugging.

IT Learning Centre 50 University of Oxford

MATLAB: A Comprehensive Introduction

Exercise 11. Error Checking
• See some common errors
• Check a user input
• Use the Matlab Debugger

Key Functions input, ischar, disp, if-else, isnumeric, while

Task 1
See some common errors

Step 1
Open the commonErrors.m script and take some time
to look through the code. It contains three errors. See
if you can find them all before running the script.
Step 2
Run the script and look at the errors Matlab shows.
For each error, go to the line it indicates and fix the
error. For more information on the types of common
errors, see Chapter 7 in the handbook.

Task 2
Check a user input

Step 1
Open the starSign.m script and take some time to fa-
miliarise yourself with what the code is doing. Remem-
ber, if you don’t know what a command does, you can
type help followed by the name of the command in the
Command Window to get more information.
Step 2
This code asks users for their date of birth, and returns
their star sign based on that information. At the mo-
ment, there is no error checking in the code, and a user
could input an invalid date of birth. Use the knowledge
you have gained so far to write in some manual error
checks and output messages that will tell the user that
what they have entered is invalid.
Step 3
Once you are confident in your error checks, run your
code and ask someone near you or the teacher to try
and ‘break’ the program by entering invalid inputs.

Task 3
Use the Matlab Debugger

Step 1
Open codeToDebug.m and run it. The code executes
without errors, but the answer is incorrect. Add some
breakpoints in the script, and use the Debugger to step
through the code line by line to help you find where the
error has occurred.

University of Oxford 51 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ischar.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/if-else.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isnumeric.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/while.html

MATLAB: A Comprehensive Introduction

8 Graphics 1: Figures, Axes and Graphs

To begin introducing MATLAB graphics, we need to start with some terminology:

8.1 Figures, Axes and Graphs

• A figure is a MATLAB window used for graphical display.

• An axes is a 2D or 3D data space defined within a figure.

• A plot is any graphic display you can create within a figure window. Figures
can contain any number of plots and each plot is created within an axes.

• A graph is a plot of data within an axes. Most plots are graphs.

To create the graph below, we run the following code:

x = -10:.1:40;

y = [1.5*cos(x)+4*exp(-.01*x).*cos(x)+exp(.07*x).*sin(3*x)];

plot(x,y)

title (’ y = 1.5cos(x) + 4e^{-0.01x}cos(x) + e^{0.07x}sin(3x)’)

xlabel(’X Axis’)

ylabel(’Y Axis’)

Figure 8.1: The basic components of a graph.

IT Learning Centre 52 University of Oxford

MATLAB: A Comprehensive Introduction

8.2 Setting up Figures

Various MATLAB commands are useful for setting up figures. We consider a few of
the most useful here.

8.2.1 figure

figure is a command (function) that opens or selects a figure window. Entering
figure on its own creates a new figure window with default properties, and makes
it the current figure for subsequent plotting commands. figure(h) will select figure
number h if it already exists, and create it if not.

Figure 8.2: Default Figure.

8.2.2 subplot

To place multiple plots on a single figure, in a regular tiled pattern, you can use
subplot. For example:

subplot(2,3,4)

defines a 2-by-3 grid on a figure and opens or selects the 4th subplot counting
along rows, from the top left. Note that subplot creates an axes in the position
specified. A graphics command at this point will output to this axes object. Try
plot(rand(1,10)). Another call to subplot will create/select a different axes:

subplot(2,3,2)

University of Oxford 53 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/figure.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/subplot.html

MATLAB: A Comprehensive Introduction

It is usually a good idea to use the same tiling grid in multiple calls to subplot on
a single figure because, when subplots overlap, the existing axes is deleted.

subplot(2,4,5)

If we avoid overlaps, it is possible to create complex subplot arrangements. For
example:

subplot(2,1,2)

subplot(2,2,2)

subplot(4,4,1)

subplot(4,4,2)

subplot(4,4,5)

subplot(4,4,6)

Figure 8.3: Tiled subplot example.

With Data Linking, such a figure can be used for continuous monitoring of multiple
data streams.

For complete flexibility, you can use the position argument: subplot(’Position’,[left,
bottom, width, height]), which creates an axes at the position specified by a 4-
element numerical vector with normalised coordinates in (0,1). For example:

close all

subplot(’position’,[0.1, 0.4, 0.6 0.2])

IT Learning Centre 54 University of Oxford

MATLAB: A Comprehensive Introduction

Figure 8.4: Positioned subplot example.

8.2.3 axes and axis

axes can be used to create an axes, and/or specify its properties. axes on its own
creates an axes object in the current figure using default properties. Alternatively,
axes(’PropertyName’,PropertyValue,...) creates an axes object having specific
property values in name-value pairs. We will cover these properties in detail in
Graphics 2, but here is a simple example:

close all

axes(’Box’,’on’,’Color’,’y’)

Figure 8.5: Example axes with defined properties.

axis is used to manipulate commonly used axes properties, such as the axis limits:
axis([xmin, xmax, ymin, ymax]). Be careful not to confuse axis and axes.

University of Oxford 55 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/axes.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/axis.html

MATLAB: A Comprehensive Introduction

8.3 GUI Tools

Tools for manipulating and interacting with figure graphics are available in a toolbar
at the top of the figure. We will look at these in detail in the next two exercises.

Figure 8.6: GUI Tools

Exercise 12. Interactive Plot Tools
• Open the Plot Tools
• Edit the Figure Properties
• Edit the Axes Properties
• Edit the Line Plot Properties
• The Figure Palette

Task 1
Open the Plot Tools

Step 1
To get started, create the graph from section 8.1, com-
plete with text labels, via copy and paste.
Step 2
Click the Show Plot Tools icon in the figure window.

By default, this opens the Figure Palette, Plot
Browser and Property Editor tools. These tools can
also be selected individually in the View menu.
Step 3
Each tool can be moved around and docked or undocked
from the figure, but we will leave them where they are.

Task 2
Edit the Figure Properties

Step 1

Ensure Edit Plot is selected in the toolbar.
Step 2
Click the dark grey background area around the graph.
Step 3
Change the background colour by selecting from Figure

Color in the Property Editor .
Step 4
Enter a Figure Name; deselect Show Figure Number.

IT Learning Centre 56 University of Oxford

MATLAB: A Comprehensive Introduction

Task 3
Edit the Axes Properties

Step 1
Select the axes by either clicking in the central white
area or clicking the axes title in the Plot Browser tool.
Step 2
Toggle the axes visibility off and on using the tick box
next to the axes title in the Plot Browser.
Step 3
In the Property Editor, change both the fill and line
colours to contrast with each other and the background.
Step 4
Toggle the x and x grids on and off in the Property
Editor, and toggle the box off and on.
Step 5
Examine the limits of each axis in the Property Editor
and change the font to SansSerif.

Task 4
Edit the Line Plot Properties

Step 1
Select the line plot by clicking on the line in either the
main figure window or the Plot Browser.
Step 2
In the Property Editor, try each of the Plot Types,
before returning to the original line plot.
Step 3
Try each line style, and increase line thickness to 2.0 in
the Property Editor.

Task 5
The Figure Palette

Step 1
With the Figure Palette Tool, you can add subplots to
your figure, change variable names and plot types, and
add annotation to the figure.
Step 2
Add, and then delete, some Annotation features.
Step 3
The Plot Catalogue Tool offers GUI access to many plot
types. To open it, right click y in the Variables box and
choose Plot Catalogue.
Step 4
In the Plot Catalogue Tool, change Plotted Variables to
x,y, choose comet and click Plot in New Figure. Then
close the new figure and the Plot Catalogue window.

Exercise 13. Data Exploration Tools
• Zoom
• Pan
• Rotate
• Cursors
• Data Brushing
• Data Linking

University of Oxford 57 IT Learning Centre

MATLAB: A Comprehensive Introduction

Task 1
Zoom

Step 1
If you have just finished the previous exercise, select
Hide Plot Tools on the Figure Toolbar. If you need to
generate the graph again, copy and paste the earlier
code into the Command Window.
Step 2

Select the Zoom In tool.
Step 3
Move the mouse pointer inside the axes noting how the
pointer changes to the zoom in symbol. Left click once
near the line plot and note how the display changes.
Repeat this process several times. To return to the
default zoom level, double click anywhere in the axes.
Step 4
For a more controlled zoom, drag a selection box over
an area (left click-and-hold, drag, release). The axes
is redrawn, changing the limits to display the specified
area. Double click to restore the original zoom.
Step 5
For a constrained zoom, right click in the axes with
the Zoom In tool selected, and choose Horizontal Zoom
from Zoom options. Drag a selection range to see how
this works before returning to the default zoom level.

Task 2
Pan

Step 1

Select the Pan tool from the Figure Toolbar.
Step 2
Click, hold, and drag to pan.
Step 3
Pan works a lot like zoom in that double clicks return to
the default view, and there are both unconstrained (de-
fault) and axis-constrained versions available through a
right-click menu.
Step 4
Try both Horizontal and Vertical panning, before re-
turning to the default view.

Task 3
Rotate

Step 1

Select the Rotate tool from the Figure Toolbar.
Step 2
Grab the axes with a left click-and-hold, and move the
graph around in three dimensions by moving the mouse.
This option is not so useful with a two-dimensional
plot, but can be useful for visualising three-dimensional
datasets. Restore the original view with a double click.

Task 4
Cursors

Step 1

Select the Cursor tool from the Figure Toolbar.

IT Learning Centre 58 University of Oxford

MATLAB: A Comprehensive Introduction

Step 2
Left Click somewhere on the line plot to place a cursor
(or data tip) on the graph. Left click and drag to move
the cursor around over the graph.
Step 3
To place additional data tips, right click and choose
Create New Datatip.
Step 4
Right click and select Delete All Datatips.

Task 5
Data Brushing

Step 1
Data brushing is used to interactively select data for
further analysis or modification. Select the Data Brush-

ing tool and drag a selection box inside the axes to
choose a dataset.
Step 2
Right click on the brushed data, choose Create Variable
and save the brushed data as a named variable.
Step 3
Other options in the Brush menu include Remove (to
remove the brushed data from the graph), Remove Un-
brushed, and Replace With (to replace all brushed data
point y values with a constant value).

Task 6
Data Linking

Step 1
Linked plots are graphs in figure windows that visibly
respond to changes in the current Workspace variables
they display and vice versa. Select the Data Linking

tool and note the Linked variables line that appears
below the Figure Toolbar.
Step 2
In the Command Window, alter the value of y using
y=y.*x (or similar) and observe the resulting changes
in the linked figure.
Step 3
Switch off linking by deselecting the linking tool and
note how further changes to the data values are ignored
in the unlinked plot.

8.4 Plotting Functions

Matlab includes a wide range of plotting functions, as summarised in the next two
figures. A linked version of these figures is available online.

Most plot types are accessible through the GUI, via the Plot Catalogue (see Exercise
5), but they can also be produced from the command line. In the remainder of this
section, we focus on the 2D line and bar graphs, via the exemplar functions plot

and bar.

University of Oxford 59 IT Learning Centre

http://www.mathworks.co.uk/help/matlab/creating_plots/figures-plots-and-graphs.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/plot.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bar.html

MATLAB: A Comprehensive Introduction

Figure 8.7: Two-dimensional plotting functions.

Figure 8.8: Three-dimensional plotting functions.

IT Learning Centre 60 University of Oxford

MATLAB: A Comprehensive Introduction

8.4.1 Line Graphs: plot

plot is the standard MATLAB line plotting function. If y is a vector, then plot(y)

produces a piecewise linear graph of y versus the index of its elements, 1:length(y).
If you specify two vector arguments, plot(x,y) plots y versus x. Thus, plot(y) is
shorthand for plot(1:length(y),y). Expanding on our earlier example:

x = -10:.1:40;

y = [1.5*cos(x)+4*exp(-.01*x).*cos(x)+exp(.07*x).*sin(3*x)];

figure(1); clf;

subplot(3,1,1)

plot(y)

subplot(3,1,2)

plot(1:length(y),y)

subplot(3,1,3)

plot(x,y)

Figure 8.9: Example plot.

A simple way to alter the properties of the lineseries plotted is to add a LineSpec
string after the x,y pair, which consists of a triplet specifying Line Style, Marker
Symbol and Color (in any order). For example:

subplot(3,1,3)

plot(x,y,’r:x’)

University of Oxford 61 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/plot.html
http://www.mathworks.com/help/techdoc/ref/linespec.html

MATLAB: A Comprehensive Introduction

Figure 8.10: Example linespec plot.

Almost all high level line plotting functions accept LineSpec string arguments, so it is
well worth learning them. More detailed property manipulation is available through
PropertyName, PropertyValue pairs, as we saw above for axes. For example:

plot(x,y,’r-s’,’MarkerEdgeColor’,’b’,’MarkerFaceColor’,’y’)

Figure 8.11: Example PropertyName, PropertyValue plot.

IT Learning Centre 62 University of Oxford

MATLAB: A Comprehensive Introduction

You can plot multiple x,y series using plot(X1,Y1,LineSpec,...,Xn,Yn,LineSpec),
but these statements can become rather long and unwieldy. An alternative is to use
hold to accumulate plots on a single axes.

hold on

plot(x,y-20,’b-s’,’MarkerEdgeColor’,’g’,’MarkerFaceColor’,’r’)

plot(x,y+20,’c-s’)

If one or both of an x, y pair is a matrix, multiple lines (one for each column) are
plotted using cycling, contrasting colours.

subplot(3,1,1)

plot(magic(9))

Figure 8.12: Example hold and matrix plots.

Finally, any call to plot can return a column vector of handles to lineseries objects,
one handle per line.

8.4.2 Bar Graphs: bar and barh

Bar graphs display vector or matrix data as vertical (bar) or horizontal (barh)
bars. bar(Y) draws one bar for each element in Y. If Y is a matrix, bar groups
the bars produced by the elements in each row. The x-axis scale ranges from 1

University of Oxford 63 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/hold.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bar.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/barh.html

MATLAB: A Comprehensive Introduction

up to length(Y) when Y is a vector, and the number of rows when Y is a matrix.
bar(x,Y) draws bars at locations specified in x. The ’style’ argument specifies the
choice between ’grouped’ (default), or ’stacked’ bars. For example:

close all

subplot(3,1,1)

bar(magic(5))

subplot(3,1,2)

barh(magic(5))

subplot(3,1,3)

bar(magic(5),’stacked’)

Figure 8.13: Example bar graphs.

IT Learning Centre 64 University of Oxford

MATLAB: A Comprehensive Introduction

9 Graphics 2: Objects and Images

9.1 Objects, Handles and Properties

Figures, axes, and plots are all examples of graphics objects in MATLAB. Each
instance of an object has a unique identifier, or handle. Handles are returned by
functions that create graphics objects. For example:

close all

h1 = figure

h2 = axes(’Box’,’on’,’Color’,’y’)

In addition, handles for the current figure and current axes are returned by gcf, and
gca. Using an object handle, you can alter the properties of an existing graphics
object. You can also specify property values when you create a graphics object, as
we saw above for axes and plot.

Graphics object properties allow us to flexibly alter figure appearance. To see the
extensive range of options available, here are links to lists of Figure Properties,
Axes Properties, and Lineseries (or Chart Line) Properties, with the latter
being the type of plot object created by plot. For an overview of object properties,
use this link.

Objects are organised into a hierarchy in MATLAB, with figures being the children of
the root object, axes being children of figures and plot objects being children of axes.
The child-parent relationship within the figure→axes→plot object hierarchy can
be used to reference related components within a complex graphical display setup.

Querying and Setting Property Values

The two most important functions for fine-tuning MATLAB graphics are get

and set, which query and specify graphic object properties, respectively. get(h)
returns all properties of the graphics object identified by the handle h and their
current values:

get(gcf)

get(gca)

get(h,’PropertyName’) returns the value of the named property. Compare:
get(gcf,’Children’)

gca

set(h) returns adjustable properties and possible values for object h:
set(gcf)

set(gca)

set(h,’PropertyName’,PropertyValue,...) sets the named properties to the
specified values.

set(gca,’Color’,’k’)

University of Oxford 65 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gcf.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gca.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/axes.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/plot.html
http://www.mathworks.co.uk/help/matlab/ref/figure-properties.html
http://www.mathworks.co.uk/help/matlab/ref/axes-properties.html
http://www.mathworks.co.uk/help/matlab/ref/chartline-properties.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/plot.html
http://www.mathworks.co.uk/help/matlab/graphics-object-properties.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/get.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html

MATLAB: A Comprehensive Introduction

Exercise 14. Exploring Graphics Objects
• Try the tutorial script
• Adjust figure properties
• Adjust axes properties
• Adjust graph properties

Key Functions get, set, gcf, gca, legend

Task 1
Try the tutorial script

Step 1
Ensure that the current folder is H:\matlab\tutorial3
Step 2
Open and run tutorial script2.m.
Step 3
Select Save As from the Save drop-down menu and
name your copy of the script graphics script.m

Task 2
Adjust figure properties

Step 1
Add a line to your script using get and gcf to examine
the object properties of the figure.
Step 2
Use set and gcf to change the background colour
(Color) to white. This can be achieved using either
a linespec-style colour character or an RGB 3-element
vector. Adding pause(1) after each new graphics com-
mand in the script will help to view sequential changes.
Step 3
Use set and gcf to set the figure position to
[200,400,700,600]. Try some alternative values.
Note the current screen resolution is given by
get(0,’ScreenSize’).
Step 4
Use set and gcf to set the figure resize property to off.
Note the effect on the figure.

Task 3
Adjust axes properties

Step 1
Use get and gca to examine the axes properties. You
may want to comment out the equivalent command for
figure properties from Task 2, Step 1.
Step 2
Use set and gca to switch off the axes box.
Step 3
Use set and gca to change x axis limits (XLim) to
[0,10].
Step 4
Use set and gca to change direction of the x axis (XDir)
to reverse.
Step 5
Use set and gca to change y tick labels (YTickLabel)
to the sequence 1:9 (see section 4.2).

IT Learning Centre 66 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/get.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gcf.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gca.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/legend.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/get.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gcf.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gcf.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gcf.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gcf.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/get.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gca.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gca.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gca.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gca.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gca.html

MATLAB: A Comprehensive Introduction

Task 4
Adjust graph properties

Step 1
Use handles = get(gca,’Children’) to get handles for the
three graphs; handles will be a 3 element vector
Step 2
Use get with (elements of) the handles vectors to ex-
amine the graph properties. Use linear matrix indexing
here. Can you work out which handle is for which line?
Step 3
Use set with handles to change the marker size in each
graph (MarkerSize).
Step 4
Use legend to give the figure a legend with text labels
for each graph.
Step 5
Use set with handles to make one graph invisible (Vis-
ible off).

9.2 Working with Images

Monochrome images are represented in MATLAB as matrices, with each pixel rep-
resented by a single matrix element. RGB colour images are handled as three-
dimensional arrays, with the first plane in the third dimension representing the red,
the second plane representing green, and the third plane representing blue.

MATLAB supports three different numeric classes for image display: double, uint16
and uint8, and image display commands interpret the data values differently de-
pending on the data type. The integer data types are most useful for storage, while
double precision is the most flexible for processing.

The major read and write functions are imread and imwrite, while imfinfo returns
information about an image file. To see a table listing the file formats supported by
these functions, run imformats.

9.2.1 Displaying Images

To display an image, use image, or imagesc. For example:

figure

imfinfo peppers.png

peppers = imread(’peppers.png’,’png’);

image(peppers)

To remove axis ticks and set the correct aspect ratio for an image you can run

axis off

axis image

University of Oxford 67 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/get.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/legend.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/double.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/uint16.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/uint8.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/imread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/imwrite.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/imfinfo.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/imformats.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/image.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/imagesc.html

MATLAB: A Comprehensive Introduction

To display an image with a one-to-one mapping of matrix element to screen pixel,
you can resize the figure and axes. For example:

[m,n,z] = size(peppers);

figure(’Units’,’pixels’,’Position’,[100 100 n m])

image(peppers); axis off;

set(gca,’Position’,[0 0 1 1])

Note, when you set the axes Position to [0 0 1 1] so that the displayed image fills
the entire figure, the aspect ratio is not preserved in printing because MATLAB uses
the PaperPosition property to determine printed size and shape. To preserve the
aspect ratio when printing, set the PaperPositionMode to auto as follows:

set(gcf,’PaperPositionMode’,’auto’)

Images can be cropped in MATLAB using sequential matrix indexing. For example:

peppercrop = peppers(1:(m/2),1:(n/2),:);

figure; image(peppercrop)

9.3 Printing and Exporting

Printing and exporting involves outputting graphics objects (usually figures). There
are four basic operations:

• Print

• Print to File

• Export to File

• Export to Clipboard

These can be accessed via either the Command Line or the Graphical User Interfaces.
We consider the former here, and the latter in exercise 12 below. The general printing
and export function is print. On its own, print send the contents of the current
figure to the printer using the printing options specified by printopt (this usually
sends printout to the default printer). The table below summarises further options
available through the addition of input arguments to print.

handle Print the specified object
filename Print to a named PostScript file
-ddriver Print using a specified driver (default is in printopt)
-dformat Export to the clipboard (Windows only). Format must be

either -dmeta or -dbitmap.
-dformat filename Export the figure to file using a specified graphics format.
-options Specify additional printing options.

To demonstrate some options, we start with an annotated peppers image:

IT Learning Centre 68 University of Oxford

http://www.mathworks.co.uk/help/matlab/creating_plots/how-to-print-or-export.html#f3-140479
http://www.mathworks.co.uk/help/matlab/creating_plots/how-to-print-or-export.html#f3-86575
http://www.mathworks.co.uk/help/matlab/creating_plots/how-to-print-or-export.html#f3-110656
http://www.mathworks.co.uk/help/matlab/creating_plots/how-to-print-or-export.html#f3-91823
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/print.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/print.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/printopt.html
http://www.mathworks.com/help/techdoc/ref/print.html#f30-443220
http://www.mathworks.com/help/techdoc/ref/print.html#f30-534567
http://www.mathworks.com/help/techdoc/ref/print.html#f30-443485

MATLAB: A Comprehensive Introduction

peppers = imread(’peppers.png’,’png’); [m,n,z] = size(peppers);

h = figure(’Units’,’pixels’,’Position’,[100 100 n m],’Color’,’k’)

image(peppers); set(gca,’Position’,[0 0 1 1]); axis off

annotation(’textarrow’,[.2,.3],[.8,.6],’String’,’Chili’,’Color’,’w’);

set(gcf,’InvertHardcopy’,’off’)

and copy to the clipboard (so you can paste it into a word document for example):

print(h,’-dmeta’)

Next, print to PostScript files:

print(h,’-dps’,’PepperFigBW.ps’)

print(h,’-dpsc’,’PepperFig.ps’)

Finally, export to Encapsulated PostScript and PDF formats:

print(h,’-depsc’,’PepperFig.eps’)

print(h,’-dpdf’,’PepperFig.pdf’)

Figure 9.1: Example peppers image.

University of Oxford 69 IT Learning Centre

MATLAB: A Comprehensive Introduction

Exercise 15. Printing and Exporting Graphics through the GUI
• Print Preview
• Export to File
• Exporting Line Plots

Key Functions imread, image, annotation, set

Task 1
Print Preview

Step 1
Open the annotated peppers figure by copying and
pasting in code from above.
Step 2
Select File|Print Preview... from the Figure window to
open the preview.
Step 3
On the Layout tab, switch to landscape mode, and alter
the manual size and position settings. Try Fill page,
before switching Placement to Auto.
Step 4
On the Lines/Text tab, increase the Font Size and Line
Width until you can clearly see both the annotation
text and arrow.
Step 5
On the Advanced tab, try each of the Renderers and
note any apparent changes.

Task 2
Export to File

Step 1
Close the print preview, and select File|Export Setup...
Step 2
Select Fonts from the Properties menu, and alter the
font to Mistral in size 18. Then click Apply to Figure.
Step 3
Select Lines, change to a fixed line width of 1.5, and
Apply to Figure.
Step 4
Click Export... and export as a tiff with no compres-
sion. Then export as a MATLAB figure, and a jpeg.
Compare file sizes and output image quality.
Step 5
Repeat step 4 after applying different Rendering set-
tings (e.g. dpi), fonts and line widths. Note the change
in file size with increasing dpi settings.

Task 3
Exporting Line Plots

Step 1
MATLAB line plot default settings are optimised for
visualisation, rather than printing. Working with the
example line graph from the start of this section (or
another line plot with axes ticks and labels), export
first using the default settings and look at the results.
Step 2
Alter export settings for better appearance of lines and
text in the exported figure.

IT Learning Centre 70 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/imread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/image.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/annotation.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/set.html

MATLAB: A Comprehensive Introduction

Exercise 16. Creating a Video
• Generate Plots
• Create Video
• Save Video

Key Functions VideoWriter, writeVideo, plot

Task 1
Create a Video

Step 1
Using ‘help’, read about the VideoWriter function.
Step 2
Use the VideoWriter function to create a Video object
called myDataPlots, and name the video ‘A Video of
my Data.avi’.
Step 3
Using the open function, open the ‘myDataPlots’ video
object.
Step 4
Create a for loop that will run 5 times. In the for loop,
generate 20 random numbers and plot them in a figure
window each time the for loop runs. Make sure you
store the figure handle in a variable.
Step 5
Use the pause command with a pause of 1 second to
see each plot appear one-by-one when the for loop runs.
The pause should be placed after the plot command
inside the for loop.
Step 6
Once you have verified that you can see each plot ap-
pear one-by-one, use the getframe function to trans-
form the plot in the figure to a video frame. Remember
to assign the frame to a variable. Now write the frame
you have created to your video using the writeVideo

function. Creating the frame and writing the frame to
your video should happen inside the for loop where you
plot your data (after the pause command).
Step 7
Ouside of the for loop, at the end of your code, close the
video object using the close function. Check that your
video has been created correctly by opening it in an ex-
ternal media player (such as Windows Media Player).
Spend some time familiarising yourself with the differ-
ent video options in Matlab, such as frame rate and
video quality.

University of Oxford 71 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/VideoWriter.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/writeVideo.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/plot.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/VideoWriter.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/VideoWriter.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/open.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/for.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/pause.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/getframe.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/writeVideo.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/close.html

MATLAB: A Comprehensive Introduction

10 File Handling - How to handle internal and external
files and data

MATLAB is able to import and export data from many different file types, and
different import and export methods are used for each type. In this section, we look
at four of the most common file types. Image data files are covered in section 9.2.

10.1 MAT-Files

MAT-files are the default data storage file type in MATLAB. They are binary files
that can store the variables in your current workspace for later use. MAT-files use
the .mat extension.

To import and export from MAT-files, we can use the load and save functions.
save, by itself, creates a binary MAT-file named matlab.mat in the current folder,
and saves all current variables in the workspace into that file. load, by itself, loads all
the variables stored in matlab.mat into the current workspace, overwriting existing
values. For example:

x = 2

y = 5

save

x = 5000

load

This is not generally the most useful way to use these functions, since each save will
overwrite any previously saved data. Instead we can include a filename argument.
Additional arguments can be used to load or save only particular variables:

save temp x

x = 5000

y = 25

load temp

To inspect the values in a saved file, we can use the command whos -file filename.
This function returns the name, dimensions, size, and class of all variables in the
specified MAT-file. Both whos -file and load will search the MATLAB path as
well as the current folder.

which durer.mat

whos -file durer.mat

IT Learning Centre 72 University of Oxford

http://www.mathworks.co.uk/help/matlab/import_export/supported-file-formats.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/load.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/save.html

MATLAB: A Comprehensive Introduction

load durer.mat

Function and Command Syntax

In common with many MATLAB built-in functions, load and save can be called
in two different ways. The examples above use the command syntax, where spaces
are used between the function name and arguments. Alternatively we can use
function syntax, where arguments are enclosed in parentheses and separated by
commas. Function syntax is more powerful than command syntax for two main
reasons:

1. We can use string variables as input arguments
2. We can return values from the function into MATLAB variables

For example:

filename = ’durer.mat’

durerdata = load(filename)

Note, durerdata is returned as a struct, which stores heterogeneous data in
named fields. You can reference (access) a field like this:

durerdata.caption

10.1.1 GUI Import and Export

It is also possible to use the GUI to inspect and load MAT-file data. To see the
variables in a MAT-file before loading the file into your workspace, click the file
name in the Current Folder browser. Information about the variables appears in the
Details Panel (bottom left of the GUI). Double clicking loads all the data from the
selected file into the workspace. To select and load MAT-file variables interactively,
use any of the following options:

• Click Import Data on the Desktop Home tab, or run uiimport.

• Drag variables from the Details Panel of the Current Folder browser to the
Workspace browser.

To save data via the GUI, use either of the following options:

• Click Save Workspace on the Desktop Home tab.

• Drag variables from the Workspace browser to the Current Folder browser.

Best Practice

While GUI tools may be easier to use when you are getting started, command
line methods are much more powerful in MATLAB. In particular, the GUI is only
useful for interactive sessions and not for automation.

University of Oxford 73 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/load.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/save.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/uiimport.html

MATLAB: A Comprehensive Introduction

10.2 Excel Files

MATLAB features several ways to read from and write to Excel spreadsheets.
The main read and write functions are xlsread and xlswrite. Generic import and
output methods can also be used, but we focus on the specific functions here.

Excel Version Support

Full functionality relies on Excel being installed on the system running MATLAB
and these functions work best in Windows. If you have Excel 2007 or 2010 (in-
cluding the COM server component), then .xlsx (and .xlsb, .xlsm) as well as .xls
files are supported. For Excel 2003, an Office Compatibility Pack is required to
read 2007+ formats. Compatibility can be tested using xlsfinfo, which returns
’Microsoft Excel Spreadsheet’ for readable files and an empty string otherwise.

The xlsread function is flexible, and a useful feature is the ability to separately
read in numeric and text data. For example, open up the hospital.xls example excel
spreadsheet (from the MATLAB stats toolbox demo), in Excel. Next, import the
data into MATLAB using:

[num,txt] = xlsread(’hospital.xls’);

Looking at the Workspace Browser, you will see that the text data have been im-
ported into a MATLAB as a cell array. A cell array is a collection of containers
called cells and each cell can store data of different sizes and types. Here, the cell
array is used to store strings of different lengths.

For spreadsheets with multiple worksheets, xlsread only imports the first worksheet
by default. To import a different worksheet, you can get the names of the sheets
using xlsfinfo, and then read in a named sheet:

[type, sheets] = xlsfinfo(’USTreasury.xls’)

[num,txt] = xlsread(’USTreasury.xls’,sheets {2})

Note the braces around the number 2 here. This is how you reference the contents
of a cell in a cell array.

To interactively select data from excel worksheets, use -1 in place of a sheet name:

[num,txt] = xlsread(’USTreasury.xls’,-1)

To import all worksheets into a struct, use importdata:

treasuries = importdata(’USTreasury.xls’)

The counterpart to xlsread is xlswrite. With xlswrite, you can export data
from the Workspace to any worksheet in an Excel file, and to any location within
that worksheet. By default, xlswrite writes to the first worksheet in a file, starting
at cell A1. If the target file already exists, xlswrite writes data in the existing
format. If not, a new file is created using the format corresponding to the file
extension specified (the default is .xls). If Excel is not installed, xlswrite exports
to a .csv file.

IT Learning Centre 74 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/import_export/f5-100860.html
http://www.mathworks.com/access/helpdesk/help/techdoc/import_export/f5-115614.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xlsread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xlswrite.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xlsfinfo.html
http://www.mathworks.com/help/techdoc/matlab_prog/br04bw6-98.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xlswrite.html

MATLAB: A Comprehensive Introduction

10.3 Text (ASCII) Files

There are many methods available in MATLAB to import to and export from
ASCII data files.

The load and save functions can work with text rather than binary files, if an
additional argument is added. For example:

x = magic(3);

save(’temp.txt’,’-ascii’)

load -ascii ’temp.txt’

Alternatively, you can launch the generic import wizard GUI by clicking the
Import Data button or running uiimport. The importdata function is largely
equivalent but without a graphical interface.

For ASCII files, uiimport and importdata should automatically detect:

• Row and column headers.

• Field delimiters (characters between data items, such as commas, spaces,
tabs, or semicolons).

• MATLAB comments (lines that begin with a percent sign).

In general load, uiimport and importdata assume that the data in an ASCII file
are:

• Rectangular (with the same number of data fields in each row)

• Numeric

Non-numeric data headers can be handled by calling uiimport or importdata, with
function syntax and a single argument, as we saw for excel files:

mydata = importdata(’headers.txt’)

ASCII files with specific formatting

If the text file formatting is known and/or complex, it can be processed using
specific import and export function as follows:
• Comma-separated value (.csv) files can be read and written using csvread

and csvwrite .
• Delimited numeric data, with a specified delimiter such as tab, can be read

and written using dlmread and dlmwrite.
• Complex text files can be read using textscan (advanced).
• Single lines of text can be read using fscanf, fgetl or fgets, while fprintf

prints a single line of formatted data to a file. These low-level functions can
be very flexible, but require much more work to set up than the high-level
functions.

University of Oxford 75 IT Learning Centre

http://www.mathworks.com/help/techdoc/import_export/f5-35378.html
http://www.mathworks.com/help/techdoc/import_export/f5-15544.html
http://www.mathworks.com/access/helpdesk/help/techdoc/import_export/br5wz4t.html#f5-91134
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/uiimport.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/importdata.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/csvread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/csvwrite.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/dlmread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/dlmwrite.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/textscan.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fscanf.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fgetl.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fgets.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fprintf.html

MATLAB: A Comprehensive Introduction

10.4 Binary Files

Generic binary files are handled using low-level I/O functions based on functions
in the ANSI Standard C Library. However, the MATLAB versions of fread and
fwrite are vectorized for efficiency (see section 11).

Before reading or writing to a file using the low-level I/O functions, it must first be
opened using fopen to obtain a file identifier (fopen is also required for low-level
I/O to text files). The first input argument to fopen is a file name string, while the
second is a permission string describing the type of access required (e.g. read, write,
append, or update). After completing low-level file I/O, a file should be closed using
fclose (Tip: learn to pair fopen and fclose calls). Here is a simple example of a
binary file write:

x = [1:3;4:6]

fid = fopen(’temp.bin’,’w’);

fwrite(fid, x);

fclose(fid);

followed by a binary file read:

fid = fopen(’temp.bin’);

y = fread(fid)

fclose(fid);

By default, fwrite writes the values from a matrix in column order as 8-bit unsigned
integers (uint8). Also by default, fread reads a file 1 byte at a time, interpreting
each byte as a uint8. fread creates a column vector output, with one element for
each byte in the file. The values in the output vector are of type double (the default
MATLAB numerical data type).

To read only a specified number of values, or import into two dimensional matrix,
a size argument to fread can be added as follows:

fid = fopen(’temp.bin’);

y = fread(fid, 4)

frewind(fid);

y = fread(fid, [2,2])

frewind(fid);

y = fread(fid, [2,inf])

fclose(fid);

To write and read with a different precision, add a precision string argument:

IT Learning Centre 76 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fwrite.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fopen.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fclose.html

MATLAB: A Comprehensive Introduction

xpi = pi*x

fid = fopen(’xpi.bin’,’w+’);

fwrite(fid, xpi, ’double’);

frewind(fid);

y = fread(fid, [2,inf], ’double’)

fclose(fid);

Exercise 17. Magic Files
• MAT Files
• Excel Files
• Binary Files

Key Functions save, load, xlswrite, xlsread, fopen, fclose,
fwrite, fread, frewind

Task 1
MAT Files

Step 1
Start MATLAB and change the current folder to
H:\matlab\tutorial4 (see section 2.2.4).
Step 2
Create two magic squares of size five and ten and save

them to two separate MAT files named magic5.mat and
magic10.mat, respectively. See section 10.1

. Step 3
clear the original magic square variables and then
reload them from the MAT files using load.
Step 4
Confirm that the reloaded variables are the expected
magic squares.

Task 2
Excel Files

Step 1
Using xlswrite in the following form:
xlswrite(filename,A,sheet,range) (where A
is the matrix to be written and the other variables
are strings; read the doc examples), write the small
magic square to an excel spreadsheet called magic.xls,
starting at cell C2, and naming the sheet magic5.
Step 2
Write the large magic square to a second worksheet in
the same file called magic10, starting from cell B3.
Step 3
Open the spreadsheet in Excel (outside MATLAB) to
confirm it has written correctly.
Step 4
Use xlsfinfo to check the format of the excel file, and
the names of the worksheets.

University of Oxford 77 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/save.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/load.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xlswrite.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xlsread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fopen.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fclose.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fwrite.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/frewind.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/save.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clear.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/load.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xlswrite.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xlsfinfo.html

MATLAB: A Comprehensive Introduction

Step 5
Clear the magic square variables from the workspace
and read them back in from the Excel spreadsheet using
xlsread in interactive mode (set sheet to -1) to read
the magic squares back into MATLAB. Select the data
before clicking OK in the pop-up box.

Task 3
Binary Files

Step 1
Using fopen, open a binary file called magic.bin for
reading and writing, discarding existing contents. Use
help to choose an appropriate permission string for
fopen.
Step 2
Using fwrite, write the small magic square to the start
of the binary file.
Step 3
Clear the small magic square variable and use frewind,
and fread to rewind the file and then read the small
magic square back in from the open binary file. You
will need to give a size argument to fread. See the
examples in section 10.4 for guidance.
Step 4
Close the binary file using fclose and reopen it in ap-
pend, read-write mode (a+). Write the large magic
square to the end of the file.
Step 5
Rewind the file, and read in both magic squares from
the binary file.
Step 6
Finally, close the binary file.

IT Learning Centre 78 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xlsread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fopen.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fopen.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fwrite.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/frewind.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fclose.html

MATLAB: A Comprehensive Introduction

Exercise 18. Demographic statistics of UK and European Union countries

• Open Excel and MAT Files
• Plotting of the data
• UK population increase rate
• Age structure of UK population

Key Functions xlsread, load, plot, XTickLabel, for, sort, sum, bar,
disp

Task 1
Open Excel and MAT Files

Step 1
Open the Excel file named ‘UK demographics.xls’ in
the H:\Matlab\tutorial4 directory outside Matlab and
study the different sheets and fields.
Step 2
Open the Excel file named ‘UK demographics.xls’
through MATLAB and assign the different sheets in
different variables, as it has been demonstrated in this
chapter.
Step 3
Open the MAT file named ‘EuropeanUnionDemograph-
ics.mat’ in the H:\Matlab\tutorial4 directory through
MATLAB. This file contains three columns: the first
one has the names of the countries in the EU, the sec-
ond has the population of each country, and the third
has the area (in km2) of each country.

Task 2
Plot of the data

Step 1
Plot the UK population over time. The x axis of the
plot should have the corresponding years.
Step 2
Plot the UK population in 2011 with respect to the age
group. Then, change the x axis labels to correspond to
the different age groups. In order to do this, consider
using the plot property ‘XTickLabel’.

Task 3
UK population Increase rate

Step 1
Create a new script and name it ‘UKpopulationIn-
creaseRate.m’.
Step 2
Using the UK demographics over time data, calculate
the rate of population change over year. For example
for year 2010, the rate is (population in 2010 - pop-
ulation in 2009)/(population in 2009). Save this data
along with the corresponding year in a matrix called
‘PopulationChangeRate’.
Step 3
Sort the ‘PopulationChangeRate’ matrix and display
the year with the highest population change rate. Con-
sider using either a loop to examine all the data and
find the highest value, or the MATLAB function ‘sort’.

University of Oxford 79 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xlsread.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/load.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/plot.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/XTickLabel.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/for.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sort.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sum.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/bar.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html

MATLAB: A Comprehensive Introduction

Task 4
Age structure of UK
population

Step 1
Create a new script and name it ‘UKpopulation-
AgeStructure.m’.
Step 2
The UK population in 2011 for five year bands is given.
Categorize the UK population according to larger age
groups, i.e. 0-14, 15-64, 65+, and calculate each groups’
population. Then, calculate the total population for
that year and the percentage for each age group.
Step 3
Plot using bar plots the population of each group. In
the axis display the age range for each group.

Task 5
Population density of EU
countries

Step 1
Create a new script and name it ‘EUcountriesPopula-
tionDensity.m’.
Step 2
Using the EU demographical data, calculate the popu-
lation density of each country.
Step 3
Sort the EU countries according to population density
in descending order.
Step 4
Display a message with the countries that have the
highest and lowest population density.

IT Learning Centre 80 University of Oxford

MATLAB: A Comprehensive Introduction

11 Performance - How to determine how efficient your
code is

MATLAB is an interpreted computing system. This means that the code is not
generally compiled into a standalone program, like most applications you will find
on a desktop PC. Instead, the code is interpreted on the fly at run-time. The advan-
tages of an interpreted system include rapid development time and the MATLAB
GUI facilities. The disadvantage is that interpreted code tends to run slower than
compiled code, particularly when the code is not optimised. In this section, we look
at ways to monitor and improve the performance of a MATLAB program.

11.1 Measuring Performance

11.1.1 Stopwatch timing

A quick way to check the speed of a particular section of code is to use the stopwatch
timer functions, tic and toc. Calling tic initialises the stopwatch timer, and a
subsequent call to toc returns the time elapsed since the last call to tic. Wrapping
any block of code in a tic toc pair should reveal how long that code takes to run.
For small programs, it may be more informative to calculate average run time.

tic

for i=1:1000

r=rand(500)*i;

end

t1=toc/1000

11.1.2 The Profiler

The profiler utility is a good way to work out where bottlenecks are in a program,
and can be particularly useful on large programs with many components. The
profiler generates a report that shows you a breakdown of which components of a
program take up most time during execution. For each MATLAB function in a
running program, profile records information about execution time, number of calls,
parent functions, child functions, code line hit count, and code line execution time.

The profiler is controlled using the profile function. Refer to the help files for an
explanation of the syntax and operation. To focus on function performance, GUI
output from the program should be minimised. Try this example to see why:

profile on

for i = 1:1000

figure(1); close all

r = rand(100);

end

University of Oxford 81 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/tic.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/toc.html
http://www.mathworks.com/help/techdoc/matlab_env/f9-17018.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/profile.html

MATLAB: A Comprehensive Introduction

profile viewer

Figure 11.1: Example profiler output.

Exercise 19. Measuring Performance
• Stopwatch timing
• Profiling

Key Functions tic, toc, profile

Task 1
Stopwatch timing

Step 1
Open the solution to exercise 5 Fibonacci sequence and
save a copy as performance.m for this exercise.
Step 2
Use the stopwatch timer functions (tic and toc) outside
the loop in performance.m to measure the time it takes
to calculate the required numbers of the Fibonacci se-
quence (in this case 20).
Step 3
Create an outer loop that in every iteration will calcu-
late a different number of Fibonacci numbers, starting
from 10 until 100 with a step of 5.
Step 4
Store the time results from toc in a results vector (using
a new variable as a counter of the iterations in order to
index the vector). Plot these time results against the
number of Fibonacci numbers calculated in each case.

Task 2
Profiling

Step 1
Use the profiler (doc profile) to analyse the performance
of the program and view the results.

IT Learning Centre 82 University of Oxford

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/tic.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/toc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/profile.html

MATLAB: A Comprehensive Introduction

11.2 Improving Performance

Quick Tips

1. load and save are faster than low-level file I/O functions (see section 10).
2. Use logical indexing to quickly access non-contiguous matrix elements.
3. Don’t change a variable’s data type. When converting, create a new variable.
x = 10

x = num2str(x)

vs.
xs = num2str(x)

University of Oxford 83 IT Learning Centre

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/load.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/save.html

MATLAB: A Comprehensive Introduction

11.2.1 Preallocation

In section 4, we explored how matrices can be dynamically increased in size in
MATLAB via concatenation, or out-of-bounds assignment. This can be useful when
used in moderation, but repeated resizing carries a memory management cost and
this can slow a program down. If it is possible to work out the maximum size a
matrix will grow to during program execution in advance, then it is more efficient to
allocate the required amount of space in advance. This is especially relevant in for

loops, where the size of a variable is increased by a fixed amount at each repeat of
the loop. Since the number of repeats in a for is known, it is better to pre-allocate
the variable. Note the performance difference between these examples:

clear; tic

x = [];

for i = 1:10000

x = [x,rand(10,1)];

end

toc

clear; tic

x = [];

for i = 1:10000

x(:,i) = rand(10,1);

end

toc

clear; tic

x = zeros(10,10000);

for i = 1:1000

x(:,i) = rand(10,1);

end

toc

IT Learning Centre 84 University of Oxford

MATLAB: A Comprehensive Introduction

11.2.2 Vectorization

In section 5, we mentioned that nested loops can be slow in MATLAB. However,
MATLAB performs vector and matrix operations very efficiently using built-in (com-
piled) code and this leads us to vectorization. Vectorization means converting loops
into equivalent vector or matrix operations, which can result in significant speed-ups
that tend to increase with increasing code complexity. Here is a simple example:

clear; tic

i = 0;

for t = 0:.01:10

i = i + 1;

for j = 1:100

y1(j,i) = sin(t)*j;

end

end

toc

tic

t = 0:.01:10;

j2 = repmat((1:100)’,1,length(t));

y2 = repmat(sin(t),100,1).*j2;

toc

numericalerror = max(max(y1-y2))

University of Oxford 85 IT Learning Centre

MATLAB: A Comprehensive Introduction

12 What Next?

We hope you have found this book useful. If you attended a taught session you will
get an email with a link to a web page to give us anonymous feedback. We always
value your feedback and use it to improve our sessions.

You may like to consider the following options to follow on from these sessions.

12.1 Computer

We encourage everyone to work at their own pace. This may mean that you don’t
manage to finish all of the exercises presented in this booklet. If you would like to
complete the exercises while someone is on hand to help you, come along to one of
the sessions that run during term time. More details are available at:

www.it.ox.ac.uk/courses/

12.2 IT Services Help Centre

The IT Services Help Centre is open by appointment only, Monday to Friday. The
Help Centre is also a good place to get advice about any aspect of using computer
software or hardware. You can contact the Help Centre on 01865 (2) 12345 or by
email: help@it.ox.ac.uk

12.3 Books

There are many MATLAB textbooks available, from general introductory texts to
application-specific guides. For a general introduction, try Getting Started with
MATLAB: A Quick Introduction for Scientists and Engineers (Rudra Pratap, 2010).
For a quick reference, try MATLAB Primer, 8th Edition (Timothy A Davis, 2010).
You can also find detailed explanations of MATLAB functions on the MathWorks
website, https://uk.mathworks.com/support/learn-with-matlab-tutorials.html.

IT Learning Centre 86 University of Oxford

www.it.ox.ac.uk/courses/
https://uk.mathworks.com/support/learn-with-matlab-tutorials.html

Helpful Summary Slides

The MATLAB Environment (Chapter 2)

MATLAB = MATrix LABoratory

High-level programming language and
interactive environment for:

Algorithm Development

Data Visualization

Data Analysis

Numerical Computations

Data types (classes) (Chapter 3)

There are many different data types or classes supported in MATLAB.

Matrix or
Array (full or

sparse)

Logical Char Numeric

int8, int16, int32,
int64, uint8,

uint16, uint32,
uint64

single double

Table Cell Struct

Scalar

Function
handle (@)

Matrices (Chapter 4)

Matrix

The most basic
MATLAB data

structure

A 2D rectangular
structure capable of

storing multiple
elements of data in an

easily accessible
format.

Its elements must all
be of the same data

type

2D matrices are also
used to store single

elements (1-by-1
matrix) and linear

series of elements (1-
by-N or N-by-1 matrix)

Arithmetic Operators (Chapter 5)

Operator Description

+ and - Addition and subtraction. A+B adds A and B. A-B subtracts B from A.

.* Array multiplication. A.*B is the element-by-element product of the arrays
A and B.

.^ Array power. A.^B is the matrix with elements A(i,j)to the B(i,j) power.

./ Array right division. A./B is the matrix with elements A(i,j)/B(i,j).

.\ Array left division. A.\B is the matrix with elements B(i,j)/A(i,j).

* Matrix multiplication. A*B is the linear algebraic product of A and B. For
non-scalar A and B, the number of columns of A must equal the number of
rows of B.

^ Matrix power. In the non-scalar power case, the calculation here involves
eigenvalues and eigenvectors.

/ Matrix right division. B/A = (A’\B’)’

\ Matrix left division. X= A\B is the solution to the equation AX=B.

Relational Operators (Chapter 5)

Operator Description

< Less than

< = Less than or equal to

> Greater than

> = Greater than or equal to

= = Equal to

~ = Not equal to

Attention! One equals symbol (=) is used for assignment.

A pair of equals symbols (= =) is used for testing equality.

Logical Operators (Chapter 5)

Operator Description

& Logical AND. A&B returns true (1) for every element location that
is true (non-zero) in both arrays, and false (0) for all other
elements.

| Logical OR. A|B returns true (1) for every element location that is
true (non-zero) in either one or the other, or both arrays, and
false (0) for all other elements.

~ Logical NOT. Complements each element of the input array. Non-
zeros become false while zeros become true.

&& Short-circuit AND

|| Short-circuit OR

For the short-circuit operators, if the outcome of the operation can be determined by

the value of the first operand, the second is not evaluated.

Loops (Chapter 5)

• for loops: execute a code block a
number of times determined on the
entry to the loop. They can also be
nested.

for index = start : increment : end

statements

end

• The statements inside the loop do
not generally affect the number of
loop repeats.

• while loops: repeat execution of a
block of statements as long as a
test expression is true.

while expression

statements

end

• To avoid infinitely-repeating
while loops, one or more
statements inside the loop must
change the value of the test
expression.

Loop control statements enable a code block to be repeatedly executed.

There are two loop types in MATLAB: for and while.

	Introduction
	What You Should Already Know
	What you will learn
	Where can I get a copy of MATLAB?

	Fundamentals - How to interact with computers
	Basic Concepts
	The MATLAB Environment
	Overview
	Desktop Tools and Development Environment
	The Command Window
	Understanding File Locations
	The MATLAB Path
	The MATLAB Editor

	Data Types - How to store different types of information
	Numeric Classes
	Characters and Strings
	The Logical Class

	Matrices - How stored data is organised for processing
	Matrix Fundamentals
	Matrix Creation
	Matrix Concatenation
	Matrix Indexing
	Matrix Information
	Matrix Resizing
	Matrix Reshaping and Shifting
	Matrix Sorting

	Operators and Control - How to tell a computer what to do
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Conditionals
	Loops
	Return and Keyboard

	Programming - How to organise your code
	Scripts
	Functions
	Script Components
	Comments
	Housekeeping Code
	Script Body - drawing a circle

	Function Components
	Function Declaration
	Help Comment Block
	Function Body

	Modular Programming
	Toolboxes

	Error Handling - How do deal with things that go wrong
	Errors
	Typographical Errors
	Syntax Errors
	Array Indexing and Assignment Errors
	Algorithmic Errors

	Debugging
	Debugging in the MATLAB editor
	Debugging in the MATLAB command prompt

	Graphics 1: Figures, Axes and Graphs
	Figures, Axes and Graphs
	Setting up Figures
	figure
	subplot
	axes and axis

	GUI Tools
	Plotting Functions
	Line Graphs: plot
	Bar Graphs: bar and barh

	Graphics 2: Objects and Images
	Objects, Handles and Properties
	Working with Images
	Displaying Images

	Printing and Exporting

	File Handling - How to handle internal and external files and data
	MAT-Files
	GUI Import and Export

	Excel Files
	Text (ASCII) Files
	Binary Files

	Performance - How to determine how efficient your code is
	Measuring Performance
	Stopwatch timing
	The Profiler

	Improving Performance
	Preallocation
	Vectorization

	What Next?
	Computer
	IT Services Help Centre
	Books

