
MATLAB:
A Comprehensive

Introduction

Catherine Paverd

catherine.paverd@eng.ox.ac.uk

October 2018

Introduction

Introduction

• This course is an introduction on how to use MATLAB, with a specific focus on data analysis

• The course will consist of 4 sessions, 3 hours each

‒ Part 1: Getting Started – Fundamentals, Data Types and Matrices

‒ Part 2: Programming Basics – Operators and Control, Programming, Error Handling

‒ Part 3: Working with Graphics –Figures, Axes, Graphs, Objects and Images

‒ Part 4: Further Programming – File Handling and Performance

• Administration

‒ Notes are available in a PDF

‒ MATLAB software is available for all university departments and colleges:

http://www.eng.ox.ac.uk/~labejp/TAH/matlabTAH.html

Fundamentals

Fundamentals

• At the most basic level, computers are made up of 1s and 0s,

but this is too tedious to write out as a programmer.

• ‘Welcome!’ in binary would look like this: ‘`01010111

01100101 01101100 01100011 01101111 01101101

01100101 00100001’

• So we invented programming languages that allow us to

write in English at a higher level, and then use compilers

or interpreters to translate what we say into something a

computer understands

• High level languages are easier to write but take longer to translate (e.g. MATLAB), while mid level

languages (e.g. C) take longer to write but can execute faster

Fundamentals

• MATLAB = MATrix LABoratory

• High level programming language used for

numerical computations, data analysis,

algorithm development, data visualisation

• MATLAB consists of various parts:

• The Language

• Desktop tools and development

environment

• Function libraries

• Graphics Libraries

• External Interfaces libraryti

The Language

•Control flow statements

•Functions

•Data structures

•Input/output functionality

Desktop Tools and Development
Environment

•Command Window

•Editor/Workspace etc.

•Debugger

Mathematical Function Library

•Collection of computational algorithms (e.g.
sine, cosine, but also matrix inversion, FFT,
etc)

Graphic Functionality

•Vector and matrix display

•2D and 3D data visualization

•Image processing

•GUI design

External Interfaces

•C/ Fortran interaction with Matlab

•Dynamic linking of routines with Matlab.

Fundamentals

The MATLAB Desktop

• Command Window (centre)

• Current Folder information (left)

• Workspace (right)

• Note: Some installations of MATLAB may be

setup slightly differently on first opening

depending on the version installed.

Fundamentals

The MATLAB Command Window

• Used to create variables, enter commands and

run programs interactively

• If you type a command here and press

ENTER, the command will execute

immediately (in most cases), and the output (if

there is one) will display in the same window

• The command window is generally used for

quick calculations – anything more substantial

should go in a separate file

Fundamentals

The MATLAB Command Window

• Example:

• You can use basic arithmetic operators (+, -,

*, / etc.) to do simple calculations.

• The output is shown in a variable called

ans. This is a generic variable and will be

overwritten every time you do a new

calculation

• One way to stop it being overwritten is to

use variables

Fundamentals

The MATLAB Command Window

• Example:

• Here is the same example using variables

• The variables are stored in the Workspace

(top right) and can be accessed at any time

• You will need to give each variable a

different name in order to avoid overwriting

data

• Note: To see what is stored in a variable, double

click on the variable in the workspace window,

or type the variable in the command window. To

see all variable at the same time, type ‘whos‘ in

the command window.

Fundamentals

The MATLAB Command Window

• There are several ways to control the display of

variables’ values in the command window, as

shown on the left.

• The format command can change the display

output of numerical values – note that this does

not affect the calculations. An example is shown

on the right.

• Note that a useful command is clc, which clears

the command window.

Fundamentals

Getting help in MATLAB

• There are two ways of getting help in

MATLAB:

• By using the Help icon at the top right

part of the MATLAB Desktop. It provides

detailed documentation of MATLAB

functionality.

• By typing in the Command Window help or

doc followed by the command or operator

name.

Fundamentals

Understanding File Locations

Fundamentals

• Where MATLAB is installedmatlabroot

• Where MATLAB looks for files

• We can view and change it in two ways:

• Using in the command window the cd or
pwd commands

• On the MATLAB Desktop using the tools
provided.

Current folder

• Current folder at startup

• userpath command shows the default startup
folder.

Startup folder

The MATLAB Path

• For performance reasons, MATLAB limits where it looks for

files.

• Files are only accessible if they are in either the current

folder, or the search path.

• The path is a list of folders where MATLAB will search for

program and data files.

• To see the path, type path in the command window.

Fundamentals

The MATLAB Editor

• The MATLAB editor is used to view and edit MATLAB program files. You can

open it by typing edit and pressing ENTER in the command window.

• MATLAB programs are text files with .m extensions and they are called M-

files.

• The MATLAB editor opens automatically when you open or create a new M-

file.

• It provides code highlighting and debugging features, and allows you to save

blocks of code so that you do not need to type out every line each time you

write a program.

Fundamentals

The MATLAB Editor

Fundamentals

MATLAB Scripts

Fundamentals

• They are the simplest kind of MATLAB programs, just containing a list of commands.

• When a script runs, the result is the same as if the commands were entered one-by-one in

the command window.

• To open a new blank script:

• Use the key combination Ctrl+N, or

• Click the New button in the editor, then choose the Script, or

• Click the New Script option on the desktop Home tab.

• To open an existing file:

• Use the key combination Ctrl+O, or

• Click the Open button in the editor or desktop Home tab, or

• Use the edit or open commands in the Command Window.

MATLAB Scripts

Fundamentals

• There are two ways to run a script:

• From the Command Window, by typing the script name and pressing

ENTER.

• From the Editor, by pressing F5 or by clicking the Run button.

• To run only a section of the script, we select this section and press F9.

• By typing two % signs you can create a new section (the editor adds a thin

black line to separate sections), or use the insert section button:

• To run a section make sure you are in the section (it will be highlighted

yellow) and press Ctrl+ENTER

End of Part 1
Please start on Exercises 1

and 2

Part 2
Data Types

Data Types

• Just like humans remember

numbers and words, computers

can too, however we need to

specify what we want them to

remember

• Each datatype below allows

certain types of information to

be stored, and certain

operations

Data Types

Matrix or
Array (full or

sparse)

Logical Char Numeric

int8, int16, int32,
int64, uint8,

uint16, uint32,
uint64

single double

Table Cell Struct

Scalar

Function
handle (@)

Data Types – Numeric Classes

• Default numerical data are double precision floating point (occupies 64-bits in memory)

• Single precision floats are supported in more recent versions of MATLAB and they occupy 32-bits at the

cost of lower precision.

• Signed and unsigned integer types are defined.

• Not all functions work for all data types. For example, sin is a built in MATLAB trigonometric function

which is not defined for integer types.

• Some commands (e.g. sequential indexing) require integer valued inputs but work with both integer and

floating point data types. For example, you can’t go to position 1.5 in an array, it is only position 1 or

position 2.

• The help documentation will help you identify which data type to use in each situation (help and doc).

Data Types

Data Types – Numeric Classes

• You can convert between

datatypes using the function

described in doc datatypes

• Converting between data types

is called ‘casting’

Data Types

Data Types – Character Class

• Text data are represented using the character (char) data type.

• A string is a vector (series stored in sequential order) of characters.

• String variables are surrounded by single quotes and highlighted in pink.

Data Types

Data Types – Characters and Strings

Data Types

Strings
are useful

for:

Working with
and displaying

text data

Displaying
warning and

error messages

Naming
variables and

files

Providing
categorical
inputs to

MATLAB
functions (more

on this later)

Data Types – Characters and Strings

• Some useful functions:

• str2num: converts strings to numeric values

• num2str: converts numbers to characters or string values

• It can be combined with matrix concatenation (more on this in the next section) to

reference a numbered file.

Data Types

Data Types – The Logical Class

• The logical data type represents a logical

true or false state as 1 and 0, respectively.

• A logical expression is a piece of code

that returns a logical value.

• Logical values are used:

• For matrix indexing

• In conditional statements (more on

this later)

Data Types

End of Part 2
Please start on Exercise 3

Part 3
Matrices

Matrices

• Almost everything in MATLAB is stored as a matrix, even all of the data types we discussed in the

previous section

Matrices

Matrix or
Array (full or

sparse)

Logical Char Numeric

int8, int16, int32,
int64, uint8,

uint16, uint32,
uint64

single double

Table Cell Struct

Scalar

Function
handle (@)

Matrices

Matrix

The most basic MATLAB
data structure

A 2D rectangular
structure capable of

storing multiple
elements of data in an

easily accessible
format.

Its elements must all be
of the same data type

2D matrices are also
used to store single

elements (1-by-1
matrix) and linear

series of elements (1-
by-N or N-by-1 matrix)

Matrices

Matrix Creation (1/2)

• Using the matrix constructor operator []

• Within the matrix constructor:

• Matrix elements are defined row-by-row with each

row terminated with a semi-colon (;)

• Elements within a row are separated by commas or

spaces.

• Spaces matter with signed data (commas are safer).

• As matrices are rectangular, all rows must have the

same number of elements.

Matrices

Matrix Creation (2/2)

• Using built-in commands (functions)

• ones: Create a matrix of all ones

• zeros: Create a matrix of all zeros

• rand: Create a matrix of uniformly distributed random numbers

• randn: Create a matrix of normally distributed random numbers

• The dimensions of the matrix are defined through the input arguments of the function.

Matrices

Generating Numeric Sequences

• The colon operator is used to generate numeric sequences

• first:last generates a vector of sequential numbers from the

first value to the last. Default increment step is 1.

• A sequence can include also negative and fractional

numbers.

• If last< first, MATLAB returns an empty matrix.

• For non-default stepping: first:step:last

Matrices

Generating Numeric Sequences

• Concatenation = create a new matrix by joining one or more matrices.

• Using the brackets operator [].

• C = [A B] or C = [A, B] for horizontal concatenation

• C = [A; B] for vertical concatenation

• Using built-in functions

• cat, horzcat, vertcat

• repmat: creates a matrix from tiled copies of a smaller matrix.

Matrices

Matrix Indexing

• There are two ways to index a single element in a

matrix:

• Row-column (subscript) indexing A(row, column)

• Linear indexing A(ind) where matrix elements

are counted downward through successive

columns.

• To convert between the two index styles: sub2ind and

ind2sub.

Matrices

Matrix Indexing – Sequential Elements

• Instead of using a single integer for indexing

a single element, we can use an integer-

valued numeric sequence to access multiple

elements.

Matrices

Matrix Indexing – Sequential Elements

• The keyword end designates the last element in a

particular dimension of a matrix.

• The colon operator by itself refers to all elements.

Matrices

Matrix Indexing – Non-Sequential Elements

• Left: Using an integer-valued matrix

• Right: Logical true and false are

represented as 1 and 0. Logical values

can be used for arbitrary matrix

indexing.

Matrices

Matrix Information

• The following functions reveal information

regarding matrix size and shape:

• size: The length of each dimension

• length: The length of the longest

dimension

• numel: The total number of elements

Matrices

Matrix Information

• The following functions reveal information regarding

matrix type and structure returning a true value on

success or false otherwise.

• Examples are:

• isfloat

• isinteger

• isnumeric

• islogical

• isvector

• isscalar

• isempty

Matrices

Matrix Information

• Matrices in MATLAB can be dynamically resized.

• Matrix expansion through concatenation.

• If writing to a location outside the current bounds of

the matrix, MATLAB automatically pads it with zeros

where a row or column is not completely specified.

• By assigning the empty matrix [] rows and columns

can be deleted.

Matrices

Matrix Reshaping and Shifting

• The following functions modify matrix shape or

ordering:

• flipud: Flip matrix in up/down direction

• fliplr: Flip matrix in left/right direction

• flipdm: Flip matrix in the specified direction

• rot90: Rotate matrix anti-clockwise by 90 degrees

• transpose: Flip matrix about its main diagonal,

turning row vectors into column vectors and vice

versa.

• reshape: Modify the shape of a matrix.

• circshift: Circularly shift matrix contents.

Matrices

Matrix Sorting

• The sort function sorts matrix elements along a

specified dimension (1 for columns, 2 for rows)

• By omitting the specified dimension causes the

function to operate column-wise.

Matrices

Matrix Sorting

• The sort function sorts by default in ascending order.

• Using an additional argument can be used for

descending order.

• The sortrows function keeps elements of all rows in

their original order and sorts the rows according to the

order of the elements in a specified column.

Matrices

End of Part 3
Please start on Exercises 4 and 5

