
MATLAB:
A Comprehensive

Introduction

Catherine Paverd

catherine.paverd@eng.ox.ac.uk

External Data

External Data Handling

• MATLAB is able to import and export data from different file types

• Depending on the file there are different import and export methods

• We looked at some of the image data types in the previous lesson

MAT Files

External Data Handling

• MAT-files:

• The default data storage file type in MATLAB.

• Binary files that can store the variables in the current workspace for later use.

• They use the .mat extension.

• To import and export from MAT-files, the load and save functions are used:

• save: creates a binary MAT-file named matlab.mat in the current folder and saves all current
variables in the workspace into that file.

• load: loads all the variables stored in matlab.mat into the current workspace, overwriting existing
values.

MAT Files – save() function

External Data Handling

• The function save creates a MAT file called matlab.mat in the current folder and saves
all current variables in the workspace to it

• Note that save by itself always saves to the file matlab.mat and so it will overwrite any
previous data saved in that file

• However, the save function can take in a name of a specific file to save to, and in that
way we can stop it from overwriting the previously saved data

MAT Files – save() function

External Data Handling

• In summary

• save  saves all workspace variables to matlab.mat

• save(‘filename’)  save all workspace variables to filename.mat

• You can also specify which variables you would like to save by writing the names of

those variables after the ‘filename’ argument:

• save (‘filename’, ‘variable1’, ‘variable2’, ‘variable3’)  saves the specified

variables to filename.mat

• Note that when using multiple arguments with save(), MATLAB will always take

the first argument inside the bracket as the filename

MAT Files – load() function

External Data Handling

• Similar to save, load will

• load  loads all workspace variables from matlab.mat

• load(‘filename’)  loads all workspace variables from filename.mat

• You can also specify which variables you would like to load by writing the names of

those variables after the ‘filename’ argument:

• load (‘filename’, ‘variable1’, ‘variable2’)  loads the specified variables from

filename.mat

• Note that when using multiple arguments with load(), MATLAB will always take

the first argument inside the bracket as the filename

MAT Files – whos() function

External Data Handling

• The function whos allows you to view the contents of the workspace or a file
without loading it

• In a similar way to save, whos can also return the contents of a specified file, or
details of a specified variable

• whos(‘-file’, ‘filename’)  returns the details about the variables in filename

• whos(‘-file’, ‘filename’, ‘variable1’)  return details about variable1 in file filename

MAT Files – GUI Import and Export

External Data Handling

• The MATLAB GUI can also be used to inspect and load MAT-file data.

• To see the variables in a MAT-file before loading: click the file in the Current Folder

browser. Information appears in the Details Panel (bottom left of the GUI).

• Double clicking loads all the data from the selected file into the workspace.

• To select and load MAT-file variables interactively:

• Click Import Data on the Desktop Home tab, or

• Drag variables from the Details Panel of the Current Folder browser to the

Workspace browser.

• To save data via the GUI:

• Click Save Workspace on the Desktop Home tab, or

• Drag variables from the Workspace browser to the Current Folder browser.

A Note on Cell Array and Structures

External Data Handling

• So far we have mostly stored our data in either a numeric or char class in MATLAB

• However, if you have different types and lengths you may need to use either a cell array

or a struct

• struct

• Class used to store data of different types and lengths that you would like to access by

name

• Use . notation to access data in a struct

• cell array

• Class used to store different types and lengths of data that you would like to access in

array form

• Access actual data using curly brackets { }

A Note on Cell Array and
Structures

External Data Handling

A Note on Cell Array and
Structures

External Data Handling

A Note on Cell Array and
Structures

External Data Handling

Excel Files – xlsread()

External Data Handling

• In addition to reading MATLAB data files, you can also import data from other files,

such as Excel

• xlsread(‘filename.xls’)  reads in numeric and text data separately from filename.xls

Excel Files – xlsread() and xlsfinfo()

External Data Handling

• By default, xlsread(‘filename.xls’) only reads in the first worksheet

• To read in other worksheets, use the specific worksheet name after the filename

• [num, txt] = xlsread(‘filename.xlsx’, ‘worksheetname’, ‘range’)

• [num, txt] = xlsread(‘filename.xlsx’, worksheetnumber, ‘range’)

• For interactive selection use xlsread(‘filename.xlsx’, -1)  open a window to allow user

to select data

• To gain information about worksheets in the Excel file, use xlsfinfo(‘filename’)

• [type, sheets] = xlsfinfo(‘filename.xls’)  store document type in type and worksheet

names in sheets

Excel Files – importdata()

External Data Handling

• So far, we have imported data from an Excel file into an array (either with a numeric type

or into a cell array)

• However, you can also import Excel data into MATLAB into a struct using

importdata(‘filename’)

Excel Files – xlswrite()

External Data Handling

• xlswrite(‘filename’, ‘array’, ‘sheet’, ‘range’):

• writes whatever is in array to file filename at specified sheet and range (sheet and

range are optional)

• used to export data from Workspace to any worksheet in an Excel file, and to any

location within that worksheet.

• by default, writes to the first worksheets in a file, starting at cell A1.

• if the target file already exists, it writes data in the existing format.

• if not, a new file is created using the format corresponding to the file extension

specified (the default is .xls)

• if Excel is not installed, xlswrite exports to a .csv file.

Text Files – load() and save()

External Data Handling

• There are many methods available to import and export data to text files

• The load() and save() functions can work for text files if an additional argument is

added

Text Files – other import methods

External Data Handling

• Alternatively, we can launch the generic import wizard GUI by clicking the Import

Data button or running uiimport.

• The importdata function is largely equivalent but without a graphical interface.

• In general, load, uiimport and importdata assume that the data in an ASCII file are:

• Rectangular (the same number of data fields in each row)

• numeric

Text Files – specific formats

External Data Handling

• If the text file formatting is known and/or complex, it can be processed using specific

import and export function as follows:

• Comma-separated value (.csv) files can be read and written using csvread and

csvwrite.

• Delimited numeric data, with a specified delimiter such as tab, can be read and

written using dlmread and dlmwrite.

• Complex text files can be read using textscan.

• Single lines of text can be read using fscan, fgetl or fgets, while fprintf prints a

single line of formatted data to a file.

Binary Files

External Data Handling

• Generic binary files are handled using low-level I/O functions: fread, fwrite, fopen,

fclose, frewind

• Before reading or writing to a file, it must first be opened using fopen to obtain a file

identifier.

• The first argument to fopen is a file name string

• The second argument is a permission string describing the type of access required

(e.g. read, write, append, or update)

• After completing low-level I/O, a file should be closed using fclose

fopen fread/fwrite fclose

Binary Files

External Data Handling

• By default, fwrite writes the values from a matrix in column order as 8-bit unsigned

integers (uint8).

• By default, fread reads a file 1 byte at a time, interpreting each byte as a uint8.

• fread creates a column vector output, with one element for each byte in the file. The

values in the output vector are of type double.

Binary Files

External Data Handling

Binary Files

External Data Handling

• To read only a specified number of values, or import

into a 2D matrix, a size argument to fread can be

added:

Binary Files

External Data Handling

• To write and read with a

different precision from

uint8, add a precision string

argument:

End of Part 1
Please start on Exercises 15

and 16

Part 2
Performance & Debugging

MATLAB Performance

Performance

MATLAB is an interpreted computing system.

The code is not generally compiled into a standalone program.

The code is interpreted on the fly at run-time.

Advantages: It has rapid development time and MATLAB GUI

facilities.

Disadvantages: It runs slower than compiled code, particularly

when it is not optimized.

Now, we are going to investigate ways to monitor and improve the

performance of a MATLAB program.

Stopwatch Timing

Performance

• To check the speed of a particular section of code we

can use the stopwatch timer functions: tic and toc.

• tic: initialises the stopwatch timer

• toc: follows a ‘tic’ call, and returns the time elapsed

since the last call to ‘tic’.

• Wrapping any code with a tic-toc pair reveals how

long that code takes to run. For small programs, the

average mean time is more informative.

• Example:

>> tic

>> for i = 1:1000

>> r = rand(500) * i;

>> end

>> t1 = toc / 1000

The Profiler

Performance

• The profiler utility:

• is useful to work out where bottlenecks are in a program, particularly

on large programs with many components.

• generates a report that shows a breakdown of which components of a

program take up most time during execution.

• Records information about execution time, number of calls, parent

functions, child functions, code line hit count, and code line execution

time.

The Profiler

Performance

• The profiler is controlled using the profile function.

• profile on: to initialise the profiler

• profile viewer: to see the results

• Syntax and operation are explained in detail in the help files.

• To focus on function performance, GUI output from the program should

be minimised.

Quick Tips to Improve Performance

Performance

• load and save are faster than low-level file I/O functions.

• Use logical indexing to quickly access non-contiguous matrix elements

• e.g. A(isnan(A)) = 0

• Don’t change a variable’s data type. When converting, create a new

variable.

• x = 10;

• x = num2str(x); vs. xs = num2str(x);

Quick Tips to Improve Performance

Performance

• Previously we explored how matrices can be dynamically increased in size via

concatenation or out-of-bounds assignment.

• This is useful, but repeated resizing carries a memory management cost and it

can slow a program down.

• Solution – Pre-allocation: work out the maximum size of a matrix and allocate

the required amount of space in advance.

• This is especially relevant in for loops, where the size of a variable is

increased by a fixed amount at each loop repeat.

• Since the number of repeats in a for loop is known, it is better to pre-allocate

the variable.

Quick Tips to Improve Performance

Performance

Quick Tips to Improve Performance

Performance

• Vectorization

• We already mentioned that nested loops can be very slow.

• MATLAB can perform vector and matrix operations very efficiently using

built-in code.

• Vectorization means converting loops into equivalent vector or matrix

operations

• They can result in significant speed-ups that tend to increase as code

complexity increases.

End of Part 2
Please start on Exercise 17

