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How to Use This Course Book

This handbook accompanies the taught session for the course. Each section
contains a brief overview of a topic for your reference and some sections are
followed by exercises.

The Exercises

Exercises are arranged as follows:
. A title and brief overview of the tasks to be carried out;
o A numbered set of tasks, together with a brief description of each;
. A key at the back of the course book.

Some exercises, particularly those within the same section, assume that you have
completed earlier exercises. Your lecturer will direct you to the location of files that
are needed for the exercises. If you have any problems with the text or the exercises,
please ask the lecturer or one of the demonstrators for help.

This book includes plenty of exercise activities — more than can usually be
completed during the hands-on sessions of the course as well as some tasks that
can be performed as a homework. These are clearly outlined throughout the course
book.

Writing Conventions

Certain conventions are used to help you to be clear about what you need to do in
each step of a task.

o Stata commands are presented with a small font on a new line similarly
to the official Stata syntax conventions.

. A button to be clicked will look .

Objectives

From this course book you should:

o Be familiar with univariate and multivariate analysis commands
o To able to use regression analysis in Stata
o Be familiar with survey commands in Stata

. Be able to produce a variety of Stata graphs
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1 Univariate and Multivariate Analysis

Stata’s flexibility in statistical analysis is one reason why it has become a popular
software package. The range of statistical analyses which Stata can perform is vast
and this section covers just some examples of the most commonly used statistical
commands in Stata and we will look both at syntax and at interpreting the output.
This section covers the following:

Correlation
T-tests

Chi-square tests
Linear regression
Logistic regression

Post-estimation commands & overview of more advanced regression models

1.1. Correlation: Listwise correlation

Correlations analyse the extent to which changes in the values of one interval level
(i.e. continuous) variable correspond to changes in the values of one or more other
interval level variables. More precisely, correlation coefficients measure the
strength and direction of the linear relationship between data points of two
variables (how closely the data follows a straight line trend). It can be imagined as
scattering the data points of the two variables, then fitting the line that represents
the best fit to the data. The correlation coefficient stands for the direction and slope
of that line. It can also be imagined as an estimate of the value of one variable based
on the value of the other variable. Correlation coefficients range between -1 to +1
where:

-1 indicates a perfect negative relationship (e.g. if we were correlating age and
income then a perfect negative relationship would be where age goes up by one unit
then income goes down by one unit)

+1 indicates a perfect positive relationship (e.g. if we were correlating age and
income then a perfect positive relationship would be where age goes up by one unit
then income also goes up by one unit)

and o indicates that there is no correlation at all between the two variables.

Hence, correlation coefficients tell us firstly about the direction of the linear
relationship between the variables (i.e. positive or negative) and secondly about
the strength of that relationship (i.e. ranging from o to +/- 1, where values closer
to 0 denote a weaker correlation). If we imagined these data to be plotted on a
scatter then a stronger correlation coefficient would suggest that the points lie
closer to the line of best fit (i.e. they have a tighter distribution) whereas a
correlation coefficient close to 0 would suggest that the data points are fairly
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randomly distributed at quite some distance from the line of best fit (which, clearly,
would not fit the data very well).

The syntax to calculate the correlation coefficient between two variables is simple:

correlate varnamel varnamel

For example, assume we wanted to calculate the correlation between total
household income and labour income in our dataset then the syntax would be:

correlate tot hh inc inc lab

The output looks like this:

correlate tot hh inc inc_lab
(obs=8181)

| tot _hh~c inc_lab

1.0000
0.7842 1.0000

tot _hh inc
inc_lab

It can be seen that the correlation between total household income and labour
income is 0.7842 and that the correlations between each variable and themselves
is (of course) 1. Focussing on the correlation between tot_hh_inc and inc_lab, the
value of 0.7842 tells us that the two variables are positively correlated (the value is
greater than zero and so when the value of one variable increases then the value of
the other variable also tends to increase) and that this is a relatively strong
relationship. This is an unsurprising result in this case as labour income (inc_lab)
is a component element of total household income (tot_hh_inc), and is indeed the
largest income source within the total household income variable which would
explain the direction and strength of the correlation.

It is possible to run correlations with more than two variables and also with a by
group if desired. For example, if we had individual level data then to correlate
income and age for men and women separately we could run the following:

bys gender: correlate income age
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1.2. Pairwise correlation (pwcorr)

Correlation can also be done ‘pairwise’ using the pwecorr command rather than the
correlate (or corr) command as above. If we used pwcorr then the output would be
interpreted in just the same way and the only difference would be in the way that
missing values are handled. For example, if we wanted to find correlation
coefficients between four variables

correlate varl var?2 var3 var4d

and half of the cases of var3 were missing but no cases for any of the other variables
were missing then using correlate would result in the correlation only including
half of the cases. This is because the correlate command uses listwise deletion,
meaning that any case which has a missing value for any of the variables specified
in the correlation command is excluded from all of the requested correlations, even
those not involving the variable with the missing data.

By contrast, pwcorr gives pairwise correlation coefficients and carries out
pairwise deletion of missing values. This means that a pair of data points are
deleted from the calculation only if one (or both) of the data points in that pair are
missing. In the example above, this would mean that any correlations involving
var3 would be done with half of the cases but that any correlations not involving
varg (e.g. the correlation between var1 and var2) would involve the whole dataset
as neither of these variables have any missing values. Clearly using pairwise
correlation (pwcorr) can mean that different data are used for the different
correlation coefficients calculated i.e. the data are ‘maximised’ in the sense
that they are used in the calculations where possible, whilst using
listwise deletion (correlate) guarantees that the same data are used in
all of the specified correlations. There are no rules to say which is the right
approach to use and it will depend upon the data and the research question in each
situation.

Additionally, pwcorr enables significance tests to be carried out for each entry in
the correlation table, by specifying options, and also allows the number of cases to
be reported. For example, to run a pairwise correlation between total household
income, labour income and investment income which reports both statistical
significance and the number of cases for each two-way correlation in the table we
would type:

pwcorr tot hh inc inc lab inc inv, sig obs

This would produce the following output which shows that all of the correlations
are statistically significant (all have p-values of 0.000) and that there are 421 cases
with missing data for labour income and/or investment income:
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. pwcorr hhsize inc_lab inc_inv, sig obs

hhsize inc_lab inc_inv
hhsize 1.0000
8602
inc_lab 0.3358 1.0000
0.0000
8181 8181
inc_inv 0.0280 0.1103 1.0000
0.0114 0.0000
8181 8181 8181

The star option can also be specified to place an asterisk by significant correlations
according to the desired level of significance, help pwcorr.

1.3. Verifying appropriateness

Correlation coefficients are based on an assumption of a linear relationship
between the variables and where the variables appear to be associated but in a non-
linear way then correlation coefficients are arguably not the most appropriate
calculation to use. The data should therefore be investigated to verify the
assumption of linearity. This can be done using scatter plots which are discussed
later on in this course book. Additionally, correlate assumes that the data has a
normal distribution. Non-parametric correlation methods such as Chi-square,
Speaman’s rho and Kendall’s tau may be more appropriate when distributions are
not normal. For instance, if the data are ranked or if there are outliers then we
could use the Spearman’s rank correlation, which will automatically rank the data
if it is not already ranked. The syntax is simple and the output is interpreted in a
similar way to the above:

spearman varnamel varnameZl

1.4. T-test

T-tests are used with interval level (i.e. continuous) variables to estimate whether
the difference between two values can be considered statistically significant. It is
commonly used to test whether the difference between two means is statistically
significant and can be used in a few slightly different ways.
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1.5. One-sample t-tests

A one-way t-test tests if the mean of a variable equals a particular value. For
example, the median value of total household income (tot_hh_inc) is £30,930. We
can use ttest to test whether the mean is significantly different to this value,

. ttest tot _hh inc==30930

One-sample t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
tot hh~c 8602 35174.27 295.3474 27392.58 34595.32 35753.22
mean = mean(tot hh inc) t = 14.3704

Ho: mean = 30930 degrees of freedom = 8601
Ha: mean < 30930 Ha: mean != 30930 Ha: mean > 30930
Pr(T < t) = 1.0000 Pr(|IT|] > |t]) = 0.0000 Pr(T > t) = 0.0000

In the output above, the first line tells us the number of observations used, the
mean and its standard error, standard deviation, and the 95% confidence intervals.
On the left, Ho: mean lists the value against which we are testing the actual mean
of total household income, and Ho relates to the null hypothesis which is being
tested (i.e. in this case the null hypothesis is that the mean household income
equals the median value of 30930). At the bottom of the output are reports relating
to whether the actual mean (35174) can be said to be different to the median
(30930) with statistical significance at the 5% level. At the bottom left Stata reports
that there is no statistical evidence that the mean is less than the median (as one
would expect). The other two hypotheses are both statistically significant at the 5%
level, however, which suggests that there is statistically significant evidence at the
5% level both that the mean is not equal to the median (bottom centre) and that
the mean is greater than the median (bottom right). This analysis therefore
suggests that the mean is larger than the median and that this
difference is statistically significant at the 5% level. As with many of Stata’s
statistical commands, the ‘level’ option can be used with ttest to change the
confidence level specified.

1.6. Two-group T-tests (with by-groups)

The t-test can also be used to compare the means of two by-groups. For example,
if we had individuals’ income and we had a binary gender variable then we could
test if the mean income of men and women was significantly different from one
another. Our data is at household rather than individual level and so we will instead
test whether the total income of households is significantly different between
households with and without a garden. The syntax to do so is simple, although note
that besides specifying the by group we add no further options:

ttest tot hh inc, by(garden)
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The output looks as follows:

. ttest tot hh inc, by(garden)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

yes 7630 37615.95 311.026 27168.08 37006.26 38225.65

no 550 28288.77 871.1529 20430.35 26577.57 29999.97

combined 8180 36988.82 297.0812 26869.02 36406.46 37571.17

diff 9327.187 1181.854 7010.452 11643.92

diff = mean(yes) - mean(no) t = 7.8920

Ho: diff = 0 degrees of freedom = 8178
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(T < t) = 1.0000 Pr(|T| > |t]) = 0.0000 Pr(T > t) = 0.0000

The output shows the number of cases, mean, standard error, standard deviation
and confidence intervals for the two groups - ‘yes’ (have a garden) and ‘no’ (do not
have a garden) - as well as for the two groups combined, and sets out differences
between the two groups on the ‘diff row. On the left (underneath the table), the
calculation of difference is set out: this shows that for the purposes of the test the
‘difference’ will be taken as the mean income of the ‘yes’ (do have a garden) group
minus the mean income of the ‘no’ (do not have a garden) group.

Below, the null hypothesis H, (there is no difference between the two groups) is
stated, and this is what we are testing.

Along the bottom of the output are the main results. At the left, it can be seen that
there is no evidence in a statistical sense that the difference is negative — i.e. that
the mean income of the households without a garden is larger than the mean
income of households with a garden (as this is how the equation is specified). Next,
the output shows that there is statistically significant evidence at the 5% level that
the difference between the mean incomes of the two groups is not equal to zero. To
the right, the output shows that there is evidence ( statistically significant at the 5%
level) that the difference between the mean incomes of the two groups of
households is positive i.e. that the mean income of households with gardens is
higher than the mean income of households without a garden and that this
difference is statistically significant at the 5% level.

NB: Equal or unequal variances?

By default ttest assumes that the variables have equal variances. If you have reason
to believe that the variances are not equal then the unequal option should be
specified.
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1.7. Two-sample t-tests

Finally, a two-way t-test performs a test of the difference of the means of the two
variables. For example, to test if the mean of labour income of households is
significantly different from their total income we would type:

ttest inc lab==tot hh inc

The output can be analysed as discussed above. In this example, the equation being
tested is the difference between the two means which is defined as the mean of
labour income (inc_lab) minus the mean of total household income (tot_hh_inc),
with the null hypothesis (H,) being that the mean difference is zero. The results
along the bottom suggest that there is evidence to suggest that the difference is
negative — i.e that total household income is larger than labour income — and that
this evidence is statistically significant at the 5% level. This result is unsurprising
given that labour income is one of five income sources which makes up the total
household income variable.

. ttest inc_lab==tot hh inc

Paired t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
inc_lab 8181 21652.16 290.3101 26258.23 21083.08 22221.24
tot hh~c 8181 36984.36 297.0783 26870.4 36402.01 37566.71
diff 8181 -15332.2 193.0518 17461.32 -15710.63 -14953.77
mean (diff) = mean(inc_lab - tot hh inc) t = -79.4202

Ho: mean(diff) = 0 degrees of freedom = 8180
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0000 Pr(|IT| > |t]) = 0.0000 Pr(T > t) = 1.0000

1.8. Paired (dependent samples) or unpaired (independent
samples) t-tests?

By default ttest assumes that data are paired. This is sometimes also referred to as
a dependent samples t-test. Paired data are typically where two values are taken
for the same units of analysis (e.g. individuals, households) at different points in
time (e.g. past and present exam scores). As the two values relate to the same entity
(e.g. same individual) then the data are assumed to have some degree of correlation
between the two variables, hence the reference to them being dependent samples
(i.e. one score is dependent (at least in part) to the other score). The ‘unpaired’
option indicates that the two variables being tested should are from unrelated units
of observation (e.g. different people or households).
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1.9. Testing the difference of means across multiple
comparison groups (oneway)

If we wished to test the difference between the means of some interval level variable
(e.g. total household income) across more than two categories of another variable
(e.g. house tenure) then the oneway command can be used to do this. If we had a
large number of levels of the grouping variable then loneway might be more
suitable, and the two produce slightly difference statistics in their output. It would
be possible to use ttest to test each pair of categories in turn but oneway will do this
more conveniently within a single command. For example, in the data we have five
categories of household tenure and we wish to compare mean total household
income between the five categories and to test if there are statistically significant
differences between the five tenure types. Let us firstly have a quick look at the
means of the groups:

table tenure, c(mean tot hh inc)

which lists the means for the different tenure types:

. table tenure, c (mean tot_hh_inc)

house owned or
rented mean (tot hh~c)
owned or on mortgage 38447.63
shared ownership 31281.73
rented 26093.47
rent free 27516.23
other 31606.87

This suggests that there may be differences in total household income between the
tenure types and we can use oneway to test the statistical significance of these
apparent differences:

oneway tot hh inc tenure

. oneway tot hh inc tenure

Analysis of Variance

Source S df MS F Prob > F
Between groups 2.5137e+11 4 6.2843e+10 87.10 0.0000
Within groups 6.2024e+12 8597 721463247

Total 6.4538e+12 8601 750353427
Bartlett's test for equal variances: chi2(4) = 42.2480 Prob>chi2 = 0.000
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The above output is a standard analysis-of-variance (ANOVA) output and shows
the group sum of squares for the model (SS), its degrees of freedom (df) and the
mean square figure (MS) which equals SS/df. The corresponding F statistic (F) is
reported, as is its significance level (Prob>F). The output above shows that the
model is statistically significant at the 1% level. At the bottom of the table, Bartlett’s
test for equal variances is reported and this is significant at the 1% level in this
output, meaning that we can reject the null hypothesis that the variances are equal.
This means that the assumptions underlying the ANOVA test (e.g. equal variances
across the populations) are not satisfied and the test may not be entirely
appropriate.

The output confirms our suspicion from the table we first created that there are
differences in total household income between tenure types: the output from the
oneway command provides evidence of differences in means which are statistically
significant at the 1% level. In order to look more closely at the significance of
differences between each of the tenure types additional options can be specified to
provide more detailed output:

oneway tot hh inc tenure, bonferroni

Here we request that the Bonferroni multiple-comparison test is also reported
(alternative options include the Scheffe or Sidak tests):

The same output as above is reported, along with more detailed output:

Comparison of tot hh inc by house owned or rented

(Bonferroni)
Row Mean-
Col Mean owned or shared o rented rent fre
shared o -7165.89
0.968
rented -12354.2 -5188.27
0.000 1.000
rent fre -10931.4 -3765.5 1422.77
0.000 1.000 1.000
other -6840.76 325.132 5513.4 4090.63
1.000 1.000 1.000 1.000

In the output above, the top left hand corner relates to the difference between
tenure types ‘rent free’ and ‘owned’ (labelled Row Mean-Col Mean in the upper left
of the output i.e. the values on the top row of the cells represents the Row Mean
subtract the Column Mean). Thus, the figure of -10931.4 in the top left corner of
the table represents the mean total household income of houses which are lived in
rent free minus the mean total household income of houses which are owned.
Looking back to the table we produced earlier, this figure of -10931.4 can be seen
to equal the 27516.23 - 38447.63 reported in the table for these two groups, where

9
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27516.23 equals the mean of the category listed in the relevant row (rent free mean
total household income) and 38447.63 equals the mean of the subgroup listed in
the relevant column (total household income of owned houses). The output also
shows underneath the figure of -10931.4 a Bonferroni adjusted p-value of 0.000
i.e. this particular difference in means is statistically significant at the 1% level
based upon the Bonferroni-adjusted significance of the difference. Looking
through the results in the table, the output suggests that households which own
their houses have the highest total household income, although the differences
between owned, shared and unspecified houses are not statistically significant.

Rather than using the oneway command these analyses could have been done using
anova. Oneway is simpler to use than anova for one-way ANOVA models and
allows multiple comparison tests such as this. Anova enables more powerful
postestimation commands (e.g. generating predictions, running underlying
regressions and postestimation commands).

1.10. One-sided/one-tailed t-tests

Stata, by default, always reports two-tailed t-tests. If you want the p-value for a
one-tailed test then it is necessary to simply divide the p-value reported by two or
(this is much more accurate if you access the full p-value from the saved results).
This latter method gives precision to several decimal places. The Stata help
provides information on how to access saved results.

1.11. Verifying appropriateness

The use of the t-test is valid only if certain underlying assumptions hold. Most
importantly, the t-test assumes that the sample mean is a valid measure of centre,
which is not a problem if the variable of interest is interval level but is a problem
with ordinal level variables as the distance between values is arbitrary. Even when
the sample mean can be assumed to be a valid measure of centre, a t-test assumes
that the underlying distribution of the variables is approximately normal and if this
is not the case then non-parametric tests (e.g. Mann-Whitney, Wilcoxon or
Kolmogorov-Smirnov) rather than parametric tests (e.g. t-test) may be preferable.
Common ways to test for normality include plotting histograms, boxplots and the
normal Q-Q plot (qnorm), the Shapiro-Wilk W test (swilk), and tests of skewness
and kurtosis (sktest).

1.12. Chi-square

Whilst t-test is used when the variable of interest is an interval (continuous)
variable, the Chi-square test is used when the variable of interest is categorical. In
order to run the Chi-square test we simply add it as an option within the tabulate
command:

10
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tabulate tenure garden, chi2 exact

. tabulate tenure garden, chi2 exact

Enumerating sample-space combinations:

stage 5: enumerations =1
stage 4: enumerations = 26
stage 3: enumerations = 933
stage 2: enumerations = 50691
stage 1l: enumerations = 0
accom: has
house owned or terrace/garden
rented yes no Total
owned or on mortgage 5,747 229 5,976
shared ownership 32 4 36
rented 1,724 302 2,026
rent free 103 14 117
other 24 1 25
Total 7,630 550 8,180
Pearson chi2 (4) = 302.4933 Pr = 0.000

Fisher's exact 0.000

This output reports observed frequencies in each cell and at the bottom of the
output reports that the differences seen are statistically significantly different to
the frequencies that would be expected were there no association between the
variables. Additional options can be included in the tabulate command to also
report relative column frequencies (col), relative row frequencies (row), expected
frequencies (expected), to suppress frequencies (nofreq), and to show the
contribution of each cell to the overall Chi-square (cchi2). As well as Pearson’s Chi-
squared (chi2), other tests of association can also be reported with extra options:
Cramer’s V (V), Fisher’s exact test (exact), Goodman and Kruskal’s gamma
(gamma), Kendall’s tau (taub), and the likelihood-ratio Chi-squared (Irchi2). All of
these different tests can be reported by default with the all option (all).

The exact option is used when the expected counts are below 5.

Whilst the above output provides evidence that there is a statistically significant
association between the type of tenure and the property having a garden/ terrace
(statistically significant at the 0.01 level, i.e. the p-value of the Fisher’s exact test is
significant at the 1% level), it does not provide any evidence as to which individual
cells shows evidence of having observed frequencies which are significantly
different to their expected frequencies. This can be done by adding additional
options to the command, including the specification of the expected values. More
options can be found using the help tabulate command.
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Exercise 1 Univariate and multivariate commands (15 mins)
e Use the bp_data.dta saved in "H:\StataLevel3\Raw data" (fictional data)

e Practice the use of basic univariate analysis commands
Task 1

e For the entire sample, what is the correlation between the baseline and
follow-up blood pressure (i.e. bp before and bp after)?
Use both the corr and pwcorr commands to perform this task.

e What does the coefficient mean?
Hint: Details on the relevant commands are described in sections 1.1 and
1.2.

e Adjust the code to find out if the correlation is statistically significant, and
how many observations are included into the summary.
Hint: these options can only be used for one of the commands.

Task 2

e Using the chi-squared test, find out if there is an association between the
allocated treatment (trt) and low blood pressure (low_bp).
Hint: the chi-squared commands are introduced in section 1.12.

e Extend the command to include the expected frequency in each cell.

Task 3

e Use a paired t-test to compare the baseline blood pressure values
(bp_before) to the follow-up blood pressure values (bp_after).
Hint: details on the two-sample t-test command are provided in section 1.7.
Here, you need to use the command for the two-sample t-test because the data
is saved in separate variables. However, remember that the data is paired.

e s there any evidence to suggest the mean blood pressure values are
different before and after the intervention? If so, at which time point is the
blood pressure higher?

Task 4

e Now use a t-test to compare the follow-up blood pressure values by
treatment group. In which group are the blood pressure values higher?
Hint: all relevant outcome data is now stored in one variable. Section 1.6
provides more information on the two-group t-test with by-groups.

Task 5

e Use the appropriate command to find out if there is statistical evidence that
the follow-up blood pressure differs by age group (agegrp), using a 5%
significance level.

Hint: details of the oneway command are provided in section 1.9.
Remember that the continuous variable needs to be listed first in this
command.

e s there evidence of unequal variances between the groups?

e Finally, use the Bonferroni adjustment to find out where potential
differences are.
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1.13. Ordinary Least Squares (OLS) linear regression

Regression analysis is a useful tool in that it isolates the independent predictive
power of individual independent (explanatory) variables holding other variables in
the model constant. There are many types of regression analysis, each suited to
particular data characteristics and analyses.

OLS is a common regression type and is used when the dependent variable of
interest is an interval variable such as height or income which has a continuous
scale, and where it is appropriate to use OLS in terms of the assumptions which
underpin it, namely: (i) linearity of the relationship between dependent and
independent variables; (ii) independence of the error terms; (iii) homoscedasticity
(i.e. constant variance of the error terms); (iv) normality of the distribution of the
error terms. The data should be checked prior to running an OLS regression to see
that it satisfies these assumptions!.

In order to fit a linear OLS regression in Stata,19 the generic syntax structure is
that the regress command starts the line and this is followed by the dependent
variable and then the explanatory variables which are to be included in the model:

regress depvar indvar(s)

For example, expenditure on food (exp_food) is an interval variable in our dataset.
To run a regression with expenditure on food as our dependent variable (interval
variable) and total household income and number of rooms as two independent
variables (both interval variables) the syntax would be:

regress exp food tot hh inc rooms

. regress exp food tot hh inc rooms

Source SIS df MS Number of obs = 8171

F( 2, 8168) = 1479.28

Model 110755790 2 55377895.2 Prob > F = 0.0000
Residual 305774326 8168 37435.6422 R-squared = 0.2659
Adj R-squared = 0.2657

Total 416530116 8170 50982.8784 Root MSE = 193.48

exp food Coef. Std. Err. t P>t [95% Conf. Interval]
tot hh inc .0022568 .0000852 26.49 0.000 .0020898 .0024238
rooms 47.37758 1.352297 35.03 0.000 44.72674 50.02843
_cons 331.2274 6.267147 52.85 0.000 318.9422 343.5126

1 Useful resources on how to run regression diagnostics can be found at
statistics.ats.ucla.edu/stat/stata/webbooks/reg/default.htm (Chapter two in particular) and
http://www.duke.edu/~rnau/testing.htm
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Starting at the top left of the output, total variance is made up of variance that is
explained by the independent variables in the model plus that which is not
explained by the model (residual or error). Conceptually, the total sum of squares
(SS Total) is the total variability around the mean S(Y — Ybar)2, the residual sum
of squares (SS Residual) is the sum of squared errors in prediction S(Y —
Ypredicted)2, and the model sum of squares (SS Model) is the improvement in
prediction by using the predicted value of Y compared with just using the mean of
Y. Hence, SSTotal = SSModel + SSResidual. Additionally, SSModel / SSTotal = R2
(0.2659) and this is because R-Square is the proportion of the variance in the
outcome variable which is explained by the independent variables in the model. Df
relates to the degrees of freedom in the model and the MS column shows the Mean
Squares, which are the Sum of Squares divided by the respective degrees of
freedom. These enable the F ratio to be calculated (Mean Square of the Model /
Mean Square of the Residuals) and this tests the overall statistical significance of
the model as whole.

At the top right of the output, the p-value associated with the F-value has a value
of 0.000 and this leads us to conclude that the model is a better predictor of the
dependent variable than taking its mean value. Typically, statistical significance at
the 5% level (p-value less than 0.05) is taken as sufficient to accept a statistically
significant association. The F-value and corresponding p-value relate to the model
as a whole and so do not allow us to say anything about the statistical significance
of any of the individual explanatory variables in the model. The R-Squared value is
the proportion of the variance in the dependent variable (exp_food) which can be
predicted from the independent variables, which in this example indicates that
26.59% of the variance in food expenditure can be predicted by the regression on
total household income and the number of rooms in the house. In other words, the
model explains only around a quarter of the variance in the dependent variable.
Note that this is an overall measure of association and does not tell us how much
contribution each independent variable makes to the predictive power of the
model. As more explanatory variables are added to the model these will explain
some of the variance in the dependent variable simply due to chance, meaning that
the R-Squared value increases as we add explanatory variables (irrespective of
their real predictive contribution). The adjusted R-Square is designed to take this
into account and seeks to give a more accurate estimate of the R-Squared,
particularly when many explanatory variables are used. The difference between the
R-Squared and adjusted R-Squared will tend to be smaller when fewer explanatory
variables are used.

Turning now to the coefficients for the explanatory variables, the column headed
exp_food lists the dependent variable at the top (exp_food) and each of the
explanatory variables in the model beneath, including the constant term which
shows at what point the regression line cuts the Y intercept (in other words, the
predicted value of the dependent variable when all other variables equal zero).
Looking first of all at the column headed P>t, this shows a p-value for each
explanatory variable, i.e. indicating whether the coefficient of that explanatory
variable can be considered significantly different to zero. In this example, all of the
explanatory variables are statistically significant at the 5% level and so for each one
we can be confident in rejecting the null hypothesis that the coefficient is zero.
Hence, we have statistical evidence from the model that each explanatory variable
has predictive power in relation to food expenditure. If we wanted to change the
level of statistical significance used to something other than the default level of 95%
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then the
level( ) option can be included. For example, to use the 99% level of significance
we would simply add level(99) as an option in the regression command. This level
option can be added to many statistical commands in Stata including, for example,
regress, logistic and ttest.

Having established that the coefficients are statistically significant, the Coef
column reports coefficients for each explanatory variable. These coefficients
mathematically describe the relationship between each explanatory variable and
the dependent variable, whilst holding constant all other variables in the model.
Hence, the coefficients represent the values for the regression equation for
predicting the dependent variable from the independent variables. They tell us the
prediction of the amount that the dependent variable (food expenditure) would
increase by if we had a one unit increase in that independent variable. Naturally,
we should be extremely cautious about interpreting coefficients whose p-values are
not statistically significant as we cannot say with any statistical confidence that
these coefficients are not in fact equal to zero, and even where p-values for
particular coefficients are significant at the 5% level it is still necessary to take into
account not just the value of the coefficient but also of the range of the confidence
intervals around this estimate. Therefore, the regression equation in this case
would be:

Y = cons + b1*X1 + b2*X2...+ error

which in this model is:

Predicted food expenditure = 331.2274 + (.00226 * total household income) +
(47.37758 * number of rooms) + error

In this example, the coefficients suggest that for every one unit (i.e. a one pound
increase in this data) increase in total household income we see a small increase in
food expenditure and that for a one unit increase in the number of rooms in the
house we see a 47.3 unit increase in food expenditure. Of course, these estimates
are based on controlling only for those variables which are included in the model:
in this model only two main effects were specified and it is therefore very likely that
these coefficients would change if we fitted a more complete model.

The standard errors associated with the coefficients are also reported and these are
used both to form confidence intervals and to test the significance of each
parameter. Finally, the confidence intervals are useful in that they set out the range
within which the estimate of the coefficient might fall and yet still be within the 5%
level of statistical significance. Hence, the tightness of the confidence interval is an
important factor in analysing regression coefficients alongside analyses of the
statistical significance and point estimate of the coefficient.

If we wished to be more conservative then we could add the robust option:

regress exp food tot hh inc rooms, robust
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This can be used with many different estimation commands and produces Huber-
White robust estimates of the standard errors which are less sensitive to violation
of assumptions relating to normality and homogeneity of variance of the residuals.
If we did this then we would see in the output that the coefficients are unchanged,
the overall F-value is lower and the standard errors are larger.

1.14. Automatically creating dummies for a categorical
explanatory variable

In the above example, both explanatory variables were — like the dependent
variable —interval level (continuous) variables and hence it was possible to simply
include them in the model as explanatory variables without any additional code.

If we want to include a categorical (including binary) variable as an independent
variable, this needs to be made clear in the code as otherwise Stata will treat the
categorical data as continuous by default. This is done by pre-fixing categorical
data with an i. in the regression coding. Note that this is not necessary for binary
data that is coded as 0 and 1, but it is good practice to use the code consistently.

In terms of the syntax, if we continued the previous model example for food
expenditure but also wanted to include the categorical variable relating to
household type as an independent variable in the model above then we could type:

regress exp food tot hh inc rooms i.house type

Source SS df MS Number of obs = 8171

F( 15, 8155) = 208.33

Model 115393278 15 7692885.17 Prob > F = 0.0000

Residual 301136839 8155 36926.651 R-squared = 0.2770

Adj R-squared = 0.2757

Total 416530116 8170 50982.8784 Root MSE = 192.16
exp_ food Coef. Std. Err. t P>t [95% Conf. Intervall]
tot hh inc .0022311 .000085 26.23 0.000 .0020644 .0023978
rooms 39.40337 1.591661 24.76 0.000 36.28331 42.52343

house type

semi-det'd house/bun -6.612475 5.983773 -1.11 0.269 -18.3422 5.117245
end terraced house -36.4402 8.816357 -4.13 0.000 -53.72251 -19.15789
terraced house -23.09887 6.974416 -3.31 0.001 -36.77051 -9.427242
purpose blt flat<1lo0 -68.42107 9.530692 -7.18 0.000 -87.10365 -49.73848
purpose blt flat >10 -80.20332 13.68671 -5.86 0.000 -107.0328 -53.37387
converted flat <10 -97.46997 16.18923 -6.02 0.000 -129.205 -65.73495
converted flat >10 -116.708 35.09705 -3.33 0.001 -185.5071 -47.9088
incl business prem -47.74758 53.55774 -0.89 0.373 -152.7344 57.23924
bedsitter underl0 -149.7722 61.06267 -2.45 0.014 -269.4706 -30.0738
bedsitter 10+ dwellg -75.86939 53.63067 -1.41 0.157 -180.9992 29.2604
bedsitter single occ -44.81009 72.95028 -0.61 0.539 -187.8112 98.19105
sheltered accommdn -139.3155 32.89321 -4.24 0.000 -203.7945 -74.83639
other -63.18846 23.04392 -2.74 0.006 -108.3604 -18.01649
_cons 390.4827 10.09922 38.66 0.000 370.6856 410.2798
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Much of this output can be interpreted as in the above example, and it can be seen
that including the categorical house type variable added only a very small amount
to the R-Squared value of the model: this suggests that the house type variable itself
does not explain very much of the variable in food expenditure and is not a
particularly powerful predictor (although some of its categories have coefficients
which are statistically significant). Focussing on the new coefficients reported
which relate to house type, it can be seen that of the fifteen categories of house type,
14 are displayed in the output. Category one (detached house/bungalow) is the
reference category and this has been excluded from the model. In terms of
interpretation, the coefficients relating to each of the house type categories set out
the extent to which food expenditure for a household of that house type would be
predicted to change in relation to food expenditure of households living in
detached houses/ bungalows.

In the output above, all of these coefficients are negative and where these are
statistically significant this suggests that — controlling for the other variables
included in the model - these household types spend less on food than the reference
group of detached houses/bungalows.

Therefore, the statistically significant coefficient of -23.09 for house type four
(terraced houses) means that a terraced household, on average, spends 23 units (in
this case pounds sterling) less on food each month than the reference category
(detached houses/bungalows) controlling for the other factors included in the
model.

1.15. Changing the base/reference category of a
categorical explanatory variable

The reference category is by default chosen to be the one with the lowest numeric
code attached to it.

Luckily since Stata11, changing a reference category can happen on the go. If you
put a prefix i. then the lowest category is the reference category. With a prefix
ba.variable the reference category changes to the category which is coded 2.

So the above regression model output can be changed to use the category with value
label 2 as the reference category by using the following command:

regress exp food tot hh inc rooms ib2.house type

The interpretation of the statistical output changes to reflect the new reference
category.

1.16. Including interaction terms

In the previous example, the categorical house type variable was included in the
model predicting expenditure on food. In this previous example, category one of
the house type variable (detached houses/bungalow) was omitted from the model
as it was the reference category by adding i. to the code. Each of the remaining
categories of the house type variable were compared to the reference category.

The previous section discussed how the interpretation of the coefficients for these
fourteen categories must be made in relation to the reference group for that
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variable. Therefore, repeating the example above, the statistically significant
coefficient of -23.09 for house type four (terraced houses) means that a terraced
household is predicted to spend 23 units (in this case pounds sterling) less than the
reference category (detached houses/bungalows) controlling for other factors (i.e.
keeping all other variables constant).

If we were to plot the regression line of feed expenditure based on total household
income separately for these two household types then these would be plotted at two
parallel lines, with lower food expenditure for households in terraced houses. The
key point hereby is that the above regression model allows the position of the
regression lines to change but does not allow the slopes of these lines to change: it
assumes that the difference in food expenditure between households in detached
houses vs. terraced house is always the same, regardless of the other variables.

Interaction effects are needed if we wish to allow the slope of the regression lines
to vary.

For example, it is commonly found that the relationship between education and
income is — for a number of reasons — not constant between men and women: on
average, for the same level of education men tend to earn higher incomes than
females, however, the difference in pay is not constant.

Hence, if we were fitting a model to seek to predict income, then we may not only
wish to include main effects for income and sex but we may also wish to include an
interaction term between income and sex in order to allow the regression slopes to
vary by these terms, reflecting the fact that evidence suggests the slope of the lines
will differ between men and women. By this it is meant that being a male or female
may affect income (sex main effect), the level of education may affect income
(education main effect), but also the extent to which education affects income will
depend upon whether the person is male or female (education®*sex interaction
term). In this example, this interaction could easily be included in the regression
as an additional explanatory variable to test this hypothesis.

Let us assume that not only did we think that total household income and whether
or not the house has a garden affected food expenditure but also that the
relationship between total household income and food expenditure was not the
same depending on whether or not a property has a garden. The following model
can be fitted to test this hypothesis, adding an interaction term between the two
explanatory variables to the model:

regress exp food i.garden tot hh inc i.garden#c.tot hh inc

The following output is generated:
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. regress exp_ food i.garden tot hh inc i.garden#c.tot _hh inc, level(99)
Source SS af MS Number of obs = 8171
F( 3, 8167) = 553.53
Model 70382486.5 3 23460828.8 Prob > F = 0.0000
Residual 346147630 8167 42383.6941 R-squared = 0.1690
Adj R-squared = 0.1687
Total 416530116 8170 50982.8784 Root MSE = 205.87
exp food Coef. Std. Err. t P>t [99% Conf. Interval]
garden
no -145.0567 15.53381 -9.34 0.000 -185.0785 -105.0349
tot _hh inc .0031714 .0000868 36.54 0.000 .0029478 .0033951
garden#c.tot_hh_inc
no .001599 .0004387 3.64 0.000 .0004686 .0027293
_cons 521.926 4.027888 129.58 0.000 511.5484 532.3035

Note that in this model we include the two main effects (total household income
and the garden variable) and the interaction term separately, hence the
explanatory variables of this model are tenure, total household income, and an
interaction term between tenure and total household income.

Also note that in the interaction term, we have to clarify (as before) that garden is
a categorical variable, but also that tot_hh_inc is a continuous variable (prefix c.).

Using regress exp food i.garden##c.tot hh inc gives the same output. The
## specifies that the full factorial of the variables, i.e. the main effects and all
possible interactions are to be used in the statistical model.

In the older Stata syntax, it is only necessary to state the interaction term as this
implies the inclusion of the main effects:

xi: regress exp food i.garden*tot hh inc

However, the output used to be less intuitive, and does not provide the value labels
for the different categories.

This output shows that the model is statistically significant (Prob>F =0.0000) and
that it explains around 17% of the variance in food expenditure. Turning to the
coefficients, the first explanatory variable in the model can be seen to relate to the
dummy variables for the “no” category of the garden variable. This means that on
average, households in properties without a garden spend around £145 less on food
a month than those with a garden, keeping all other variables constant. These are
the coefficients relating to the tenure status main effect. Next comes the coefficient
for total household income which shows only a slight positive association between
total household income and food expenditure when controlling for the other
factors included in the model, albeit a statistically significant association. This is
the coefficient relating to the total household income main effect, and it is a single
coefficient because this is an interval level variable (whereas the garden variable,
in contrast, is a categorical variable). Following this comes the coefficient relating
to the interaction between garden and total household income:
garden#c.tot_hh_inc relates to the interaction between garden (no) and total
household income. Garden group one (yes) is again omitted as the reference
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category for the interaction terms, though this could be changed, as discussed
above.

All of the coefficients are statistically significant at the 5% level.

It is important to note how the interpretation of the coefficients changes as a result
of including the interaction terms in the model. In the previous model in which
only main effects were specified the coefficient relating to total household income
related to the association between total household income and food expenditure
for all garden types: in this sense it could be considered a global parameter as it
applies to every garden group. By including the interaction terms between total
household income and garden, however, we are asking whether this global
parameter for total household income across the different garden types actually
applies or whether, each garden type should have its own coefficient (i.e. what can
be understood as local parameters between each individual garden types and total
household income). Therefore, in the output the coefficient relating to the total
household income main effect relates to the association between total household
income and food expenditure for households with a garden (as this is the reference
group for the tenure type main effect) and not for all garden types. For all other
garden types (i.e. here those without a garden), the interaction terms state what
the coefficient between total household income and food expenditure is
significantly larger. This means that for households without garden, each unit
increase in total household income leads to a larger unit increase in food
expenditure than is the case for the reference group (households with a garden). If
we were to plot the regression lines this would lead to a regression slope for
households without garden which at the intercept is about £145 below the
regression line for households with garden, (given by the negative coefficient
against the main effect for garden - no) but which also has a different slope to the
line for households with gardens (given by the coefficient on the interaction term).
In this case, the positive coefficient of the interaction term shows that the
regression lines for house with and without garden will move closer together as
total household income increases (i.e. the difference in food expenditure between
households with and without garden is predicted to decrease as total household
income increases).

o Another way|

Stata handles factor (categorical) variables elegantly. You can put ## instead to
specify a full factorial of the variables—main effects for each variable and an
interaction. If you want to interact a continuous variable with a factor variable, just
prefix the continuous variable with c.. You can specify up to eight-way interactions.

1.17. Logistic regression

The logistic command is used when the dependent variable is a binary variable and
estimates odds ratios; the logit command fits an identical model but reports beta
coefficients rather than odds ratios. An alternative way to gain odds ratios is to use
the logit command and to specify the ‘or’ option (requesting odds ratios).

The syntax is equivalent to that used with OLS. For example, assume we wanted to
run a model with ‘garden’ as the dependent variable. Currently, garden equals 1 for
houses with a garden and 2 for houses without a garden. Firstly, we would need to
set up this variable as a binary (i.e. 0/1) variable as Stata expects a 0/1 binary for
the dependent variable. Therefore we generate a new binary variable called
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garden2 where ‘no — do not have a garden’ equals 0 and ‘yes — have a garden’ equals
1 (the category of interest in the dependent variable should be set to equal 1 —
normally this is the ‘positive’ category). We can now run the model, in which we
predict this binary outcome variable with three interval level independent
variables:

logistic garden2Z inc lab hhsize total mortgage

The following output is produced:

. logistic garden2 inc_lab hhsize total mortgage

Logistic regression Number of obs = 3078

LR chi2 (3) = 48.77

Prob > chi?2 = 0.0000

Log likelihood = -526.63821 Pseudo R2 = 0.0443
garden?2 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
inc_lab 1.000006 4.53e-06 1.23 0.219 .9999967 1.000014
hhsize 1.644186 .1379937 5.92 0.000 1.394797 1.938166
total mortgage 1 4.00e-07 -0.09 0.926 .9999992 1.000001
_cons 5.073256 1.140796 7.22 0.000 3.264988 7.883008

The first thing to notice is that in the top right corner Stata reports that 3078
observations were used in the model. Given that our dataset has close to 9000
observations this means that we have a large number of cases with missing data for
one or more of the variables used in the model: any case with a missing value for
any of the variables included in a regression model will be omitted from the model.
This amount of missing data and dropped cases would warrant further
investigation as the estimates in this model may be biased given that they rely on
only a portion of the cases. The top right of the output shows that the model we ran
is statistically significant (Prob > chi2=0.00). Logistic (and logit) regression do not
have an R-Square in the way that OLS regression does but psudo-R2estimates such
as this have been created in a range of ways. In this example, the pseudo-R2 value
suggests that around 4.4% of the variance in garden possession is explained by this
model. It is advisable to interpret the psudo-R2 estimate in a logistic/logit
regression with extreme caution.

Turning to the coefficients, it can be seen that the only coefficient which is
statistically significant is that for household size. The amount of labour income and
the total mortgage are not statistically significant predictors, perhaps surprisingly.
Focussing on the coefficient of 1.64 for household size, the interpretation of this
coefficient is that for each unit increase in household size (i.e. as the household
becomes one person larger) the odds of a household having a garden increase 1.64
fold. Note that with logistic regression odds ratios centre around one (rather than
zero as with OLS for instance): here, explanatory variables with odds ratios greater
than one relate to households being more likely to have a garden whilst odds ratios
of less than one mean households are less likely to have a garden.
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Again, independent variables which are categorical can be included using i. prefix:

logistic garden2 inc lab hhsize total mortgage i.tenure

The logit command will fit exactly the same model but will report beta coefficients
rather than odds ratios (unless specified otherwise). Hence,

logit garden2 inc_lab hhsize total mortgage

produces the following output:

. logit garden2 inc lab hhsize total mortgage

Iteration O: log likelihood = -551.0221
Iteration 1: log likelihood = -528.53089
Iteration 2: log likelihood = -526.64075
Iteration 3: log likelihood = -526.63821
Iteration 4: log likelihood = -526.63821
Logistic regression Number of obs = 3078
LR chi2 (3) = 48.77
Prob > chi?2 = 0.0000
Log likelihood = -526.63821 Pseudo R2 = 0.0443
garden? Coef. Std. Err. z P>|z| [95% Conf. Interval]
inc_lab 5.57e-06 4.53e-06 1.23 0.219 -3.31e-06 .0000145
hhsize .4972456 .0839283 5.92 0.000 .3327492 .6617419
total mortgage -3.74e-08 4.00e-07 -0.09 0.926 -8.22e-07 7.47e-07
_cons 1.623983 .2248647 7.22 0.000 1.183256 2.06471

At the top of the output Stata reports the log likelihood at each iteration, with
iteration zero relating to the null (or empty) model. Logistic regression uses
maximum likelihood, which is an iterative process, and seeks to maximise the log
likelihood at each iteration, stopping when the difference between successive
iterations is small and the model is said to have converged. At the top right of the
output, it can be verified that the logit model uses the same number of cases as the
logistic model above, the likelihood ratio Chi-square test is reported and the model
is statistically significant (this is the probability of obtaining the Chi-square
statistic given that the null hypothesis is true) and the psudo-R2is reported (again,
4.4% of the variance explained as this is the same model as above).

The coefficients are reported in log odds and relate to the prediction of the
dependent variable given the values of the independent variables. In terms of the
regression equation, this can be written as:

Log(p/1-p) = cons + b1*X1 + b2*X2...+ error
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where p is the probability of having a garden, b relates to the estimates of the
coefficients and X relates to the values of the independent variables.

The coefficients report the predicted increase in the log of the odds having a garden
given a one unit increase in the independent variable, holding all other predictors
constant. For example, in the above output the coefficient for household size is
statistically significant and has a value of 0.497. This tells us that for each unit
increase in household size we predict a 0.497 increase in the log odds of having a
garden, controlling for all other predictors in the model. As log-odds are difficult
to interpret odds ratios are often used instead.

1.18. Post-estimation commands

Following any estimation command there are a range of post-estimation
commands which can be used to obtain further information or carry out further
tests. Two of the most commonly used are predict and test.

1.19. Predict

After running estimation commands it is possible to use the predict command to
fit the previous model to the data and, therefore, to create predicted values of the
dependent variable for each case based on the model coefficients applied to the
data values of the case in the dataset. Predict must follow the estimation command
immediately and consists of the command itself plus the name of the new variable
to create. After the comma, options are specified; in this case xb for linear
predictions. For example,

regress exp food tot hh inc rooms

predict pred exp food, xb

In this example we initially run the linear regression command in line one and this
gives us all of the usual model output which we have seen above. The predict
command in the second line uses this output to take the values for each observation
and fit these values to the regression model’s coefficients in order to predict the
value of the outcome variable based on the regression equation (which we decided
to call pred_exp_food). Often, this will be used to compare the actual data for the
dependent variable against the predicted value using a scatter diagram. This can
also be useful to, for example, impute predicted values of exp_food in cases with
missing values or for cases outside the range of values covered in our dataset. What
predict does exactly depends on the estimation command which it follows.

The predict command can take various different options in order to gain extra
information including:

Option after predict | Option calculates

resid Residuals

rstandard Standardized residuals
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rstudent Studentized or jacknifed residuals

lev or hat Leverage

stdr Standard error of the residual

cooksd Cook’s D

stdf Standard error of the predicted individual
stdp Standard error of the predicted mean
1.20. Test

Following a regression model it is also possible to test whether one or more
explanatory variables collectively are significant predictors. For example, in our
dataset we have five individual variables relating to different income sources, and
collectively these can conceptually be thought of as representing the contribution
to the model of ‘income’ as an explanatory factor. We could include each of these
in the model as explanatory variables — using the inc* to include all variables
beginning with ‘inc’ in the model as independent variables - and then use test to
assess the collective contribution of these variables to the predictive power of the
model.

regress exp food inc* rooms i.tenure

produces the normal regression output. We can then follow this with the test
command and specify the five income variables which we wish to collectively test

test inc_lab inc nonlab inc_pens inc bens inc_inv

which produces the following output:

. test inc lab inc nonlab inc pens inc bens inc inv

inc_lab = 0
inc _nonlab = 0
inc_pens =

0
inc_bens = 0

g w N

inc inv = 0

F( 5, 8159) = 22.09
Prob > F 0.0000

This tests whether each of the coefficients equal zero. The fact that the p-value at
the bottom of the output is statistically significant means that the collective
contribution of these five variables is statistically significant. In other words, there
is a statistically significant difference between a model with these variables
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included and a model without them: ‘income’ as a collective concept seems to be a
useful predictor of food expenditure.

If we wish to test whether the coefficients for labour income and pension income
can be said to be significantly different to one another in a statistical sense then the
test command can also be used to do this:

regress exp food inc* rooms i.tenure

test inc lab=inc pens

which produces the following output:

. test inc lab=inc pens

(1) inc_lab - inc_pens = 0
F( 1, 8159) = 1.69
Prob > F = 0.1934

In this case test tests the null hypothesis that the difference between the two
coefficients is equal to zero. It can be seen that the p-value is not statistically
significant at the 5% level and we cannot therefore reject the null hypothesis. This
shows that there is insufficient evidence to suggest that the two variables have a
statistically significantly different effect on the outcome.

1.21. More advanced post-estimation commands in Stata

Stata’s flexibility and statistical power has made it popular with those seeking
advanced modelling commands and these are beyond the scope of this course,
although a good understanding of the use and interpretation of linear and logistic
regression models is advisable before applying other estimation commands. Some
of the (many!) other estimation commands available include:

Command Type of model Description of model
rreg Robust regression OLS regression which is less sensitive to outliers
mlogit Multinomial logistic | Categorical dependent variable which has no
regression natural ordering (e.g. tenure type)
ologit Ordered logistic | Categorical dependent variable which has a
regression natural ordering but where the distances between
adjacent levels are unknown (e.g. degree class —
Distinction, Merit, Pass, Fail)
probit Probit regression Binary dependent variable and estimates
predicted probabilities (similar to logit)
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oprobit

Ordered
regression

probit

Categorical dependent variable which has a
natural ordering but where the distances between
adjacent levels are unknown (e.g. degree class —
Distinction, Merit, Pass, Fail)

tobit

Tobit regression

Generates a model that predicts the dependent
variable to be within a specified range. Used when
the dependent variable is left and/or right
censored (e.g. if dependent variable is test scores
where the minimum test score is 30 and the
maximum is 80)

intreg

Interval regression

Used when the dependent variable is banded and
censored (e.g. income bands which begin at £0-
£500 as the lowest band and end at £5000+ as the
top band)

truncreg

Truncated
regression

Used when the data includes only a section of the
population. For example, a sports training
programme seeks to improve speed, but an
evaluation concern is that individuals must be able
to run 100m in less than 12 seconds in order to be
admitted to the training programme. There data
(and model) will therefore exclude all slower
runners.

xtreg

Regression models
for panel data

Used when there panel datasets across multiple
time points, or on non-panel data for fitting
random and fixed effects.

svy.regress, etc | Survey  regression | Regression models for survey data (weights,
models clustering and stratification can be handled)

heckman Heckman selection | Used when there is self-selection in the data (e.g.
models a dataset of females’ earnings where some females

choose not to work and so have zero income.
Heckman models could be used if we wanted to
predict wage income to take account of the fact
that these women could have chosen to work and
hence earn positive income, hence it would give us
an unbiased estimate)

arima & arch

Time-series models

Used to fit dynamic regression models where the
data over a time period (e.g. crime counts for a ten
year period)

poisson Poisson regression | Used to model count data with a poisson
distribution, typically for rate data in which the
outcome variable is the rate at which an event

occurs over a given time period
psmatch2 Propensity score | Used for generating propensity scores and
matching carrying out propensity score matching of various

(downloadable .ado
file)

types
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Exercise 2 Regression analysis (15 mins)

e Use the bp_data.dta saved in "H:\StataLevel3\Raw data" (fictional data)

o Apply some of the regression analysis commands introduced in this session

Task 1

Task 2

Task 3

Generate a linear regression model with bp _after as the outcome variable,
and bp_before as the explanatory variable.

Hint: Information in Stata code for simple linear regression is provided in
section 1.13.

Is the explanatory variable (i.e. bp_before) statistically significant (at the
5% level) in this model?

What is the R?(adjusted) value, and what does it mean?

To improve the model, add “weight” as another continuous or interval
variable to the model. Also add “trt” as a categorical variable to the model.
Hint: Which additional code do you need to use to implement categorical
variables? Information provided in section 1.14.

How much more of the variation in the outcome variable does this model
explain?

Are the additional variables significant in the model?

What effect does drug A have on the outcome variable, compared to Drug
B?

Change the code in the above model so that Drug A is now the reference
category (i.e. the effect of drug B on the outcome variable should be
displayed in the output, instead of drug A).

Hint: Drug B is coded 0, drug A is coded 1.

Keep the three explanatory variables in your model, but change the
outcome to the “low_bp” variable. This is a binary variable.

Ensure that odds ratios are displayed in the output.
Hint: information on logistic regression models is provided in section
1.17.

Is bp_before statistically significant in the model?

Is the drug received (“trt”) statistically significant in the model? How do
you interpret this explanatory variable in the model?
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2 Stata graphics

Stata has a large and flexible range of graphics options, although it can take some
time to get the graphs just right and to fully grasp the logic of Stata graphic, the
advantage is that once the syntax is written to make the graph you want;
it is then easy to quickly replicate the same, or similar, graphs.

The syntax for Stata graphs can come in up to three parts: (1) main graph
command; (2) options; and (3) styles and concepts.

This course only covers basic graphs and options, but additional details can be
found in the Stata help or in the more advanced Stata courses taught at the
University of Oxford IT services.

2.1. Histogram

A histogram is a graph of a relative frequency distribution for a quantitative
variable (Agresti and Finlay 2009). A frequency distribution is a listing of possible
values for a variable together with the number of observations for each value. Each
interval has a bar over it, with height representing the number of observations in
that interval. Histograms are commonly used to also show the bars (often called
bins) of densities, frequencies or percentages for each value of a discrete variable
along the x-axis. For example, we can create a simple histogram of number of
rooms in the house in which the household resides. The default for histogram is to
show density and this is what is shown in the graph below. To ensure that one bar
is plotted for each different number of rooms, the ‘discrete’ option is used:

/***** hlStOgram *********/
/* density 1s the default, with no titles or labels */

histogram rooms, discrete

o

© T T T T

1
number of bedrooms

The graph above gives us an indication of the distribution of the variable rooms but
visually it may not correspond to textbook and article style graphs. In the next
graph we augment the syntax by adding different options so that the bars represent
frequencies rather than densities, we add an overall title to the graph, we title both
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of the axes, and we change the bar colour to red. Each of these changes is applied
by adding options. The frequency option scales the graph in a way that the height
of each bar amounts to the number of observations in that category. Alternatively,
percent will scale it in a way so that the sum of the heights of all bars will equal 100.
A common option is ‘normal’ and this plots a normal distribution over the top of
the histogram.

Writing syntax for graphs often takes several lines (or one very long syntax line).
Remember that you can indicate that the command continues to the next line by
specifying /// at the end of a line.

Another option among programmers is to use delimit to write the syntax; and
change the delimit from a carriage return (the default) to a semi-colon at the start
of the syntax and then change it back to a carriage return at the end of the graph
syntax: this enables us to press enter during the syntax to make the graph without
producing an error message so long as we remember to include the semi-
colon (or whatever you set the new delimit to be) at the end of the block
of syntax. See the Stata: Data access and management course for a discussion
of the delimit.

/* showing frequency of bins rather than density, with normal
distribution line plotted, with title, xtitle, ytitle and changing
the colour of bins */

histogram rooms, freq discrete normal ///

title ("Histogram of number of rooms") ///

xtitle ("Number of bedrooms") ytitle ("Frequency") ///
fcolor (red) lcolor (black)

Histogram of number of rooms

1000 1500 2000 2500

500

10
Number of bedrooms
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2.2. Bar graph

Bar graphs are produced with the graph ‘bar’ command. A bar graph has a
rectangular bar drawn over each category. The bars are separated to emphasize
that a variable on the x axis is categorical rather than quantitative. For example, if
we wanted to produce a bar graph of mean household value for each region then
the syntax would be:

graph bar (mean) hhvalue, over (region)

london  south_east south_west midlands north_west north_east

Note in the syntax above that the ‘over’ option is used to specify any categories
which you wish the single graph to be presented over. In this example we want a
bar for each region and hence the graph is made ‘over(region)’. This graph shows
us the data we wanted but it would look better with some extra formatting.

We create the same graph below but with formatting extras: we reduce the label
size to 75% of the original size and alternate the labels along the x-axis to give them
more room; we also add a title, subtitle, note and title on the y-axis:

/* bar graph with reduced label size & alternated labels, title,
subtitle, note and title on y-axis */

graph Dbar (mean) hhvalue, over (region, label (labsize (*0.75)
alternate))

title ("Mean house value")
subtitle ("by region")
note ("Source: Stata Level 3")

ytitle ("Mean house price") ;
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Mean house value
by region

london south_west north_west
south_east midlands north_east

Source: Stata Level 3

This looks much better but there are still some changes we could make if we wished.
In the following graph we relabel the x-axis labels to tidy them up (note that the re-
labelling and changing the label size of the over category takes place within the
brackets relating to the ‘over’ category), we label each bar, and we add horizontal
lines on the y-axis from 50,000 up to 300,000 at intervals of 50,000. Note that we
also specify the bar option to change the colour of the bars to orange: this is a case
of specifying which variable you wish to make the changes to (in our case it is
number 1 as we only have one variable — hhvalue) then writing a comma and
adding in the color option with the desired colour in brackets:

/* adding extra options to re-label bars on the x-axis, to add the
mean figure to the top of each bar, and adding y-lines at intervals
of 50,000, and changing bar colour */

graph bar (mean) hhvalue, ///
over (region, relabel(l "London" 2 "South East" 3 "South West" ///

4 "Midlands" 5 "North West" 6 "North East") label (labsize(*0.75)))
///

title ("Mean house value") ///
subtitle ("by region"™) ///

note ("Source: Stata Level 3") ///
ytitle ("Mean house price") ///
blabel (bar) bar(l,color (orange)) ///
yline (50000 (50000)300000)
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Mean house value
by region

309457

240104

229879

181231 177416

168992

London South East South West Midlands North West North East
Source: Stata Level 3

It is also possible to plot more than one variable at the same time, as shown below:
graph bar (mean) hhvalue inc_tot if house type <=3, ///

over (house type, relabel(l "detached" 2 "SEMI" 3 "End of terrace" ) ///
label (labsize (*0.75))) ylabel(, labsize(small)) ///

title ("Mean house value and labour income") ///

subtitle ("by house type") ///

note ("Source: Stata Level 3") ///

ytitle("£") ///

blabel (bar) bar(l,color (orange)) ///

yline (50000 (50000)250000)

Mean house value and labour income
by house type

265483

161133

132652

50,000 100000 150000 200000 250000

29552.3 25464.8

0
I

detached SEMI End of terrace

|_ mean of hhvalue [l mean of inc_total

Source: Stata Level 3
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2.3. Horizontal bar graph

It is equally possible to produce horizontal rather than, as in the previous
examples, vertical bar graphs. This is simply a case of specifying graph hbar rather
than graph bar:

graph hbar (mean) hhvalue, over (house type) ///
title ("Mean house value by property type") ///
ytitle (“Mean House Value”) ///

blabel (bar)

Mean house value by property type

det'd house/bungalow 265483

semi-det'd house/bun
end terraced house
terraced house
purpose blt flat<10
purpose blt flat >10
converted flat <10
converted flat >10
incl business prem
bedsitter under10
bedsitter 10+ dwellg
bedsitter single occ
sheltered accommadn
other

161133

132652
129310
105510
132110
188662
157083

270000
100000

232500
100000

155000
179351

T T T
0 100000 200000 300000
mean of hhvalue

2.4. Stacked bar graph

Stacked bar graphs can be a good way to convey a lot of data in a single graph,
particularly when variables could be combined to convey some greater concept. For
example, in our dataset we have variables relating to five different income sources
and we could use a stacked bar to show how income packages vary across our
tenure types (or some other variable of interest such as region) as in the following
syntax. Note that we do not wish to create a bar for unspecified tenure (missing)
types and those categorised as “other” as these groups are of no interest to us. The
mean in brackets is a typical option and indicates that we wish the bars to show
that mean of the income variables. The stack option specifies that we wish to make
a stacked bar chart and the percentage option specifies that bars should sum to
100% and that stacks within the bar should therefore be the percentage of that
tenure type’s total income from each income source. A stacked bar is presented for
each tenure type - i.e. the graph is over(tenure) — and there is a title, subtitle and
y-axis title specified. Additionally the bar option is specified to adjust the colour of
each bar, where the number specified in the bar option relates to the order of the
variable in the variable list (e.g. 1 relates to inc_lab):

/* income sources over tenure types, with title, subtitle and y-
axis title, and bar colours changed */
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graph bar (mean) inc lab inc nonlab inc pens inc bens ///
inc_inv if tenure!=. & tenure!=5, ///

over (tenure, relabel (1 "Owned" 2 "Shared ownership" ///

3 "Rented" 4 "Rent Free")) percentage stack ///

title ("Stacked bar chart of income source") ///

subtitle ("by tenure status") ///

ytitle ("Percentage of total household income") ///

bar (1,color (orange)) bar(2,color (blue)) bar(3,color(red)) ///

bar (4, color (green))bar (5,color (black))

Stacked bar chart of income source
by tenure status

100
1

80
1

40

Owned Shared ownership Rented Rent Free

[ mean of inc_lab I nean of inc_nonlab
I neanofinc_ pens [ mean of inc_bens
I canof inc_inv

Thus, one possible interpretation in the current case is that over 60 per cent of the
income of people in properties that are owned outright or partly owned comes from
labour but that share falls over 20% percentage points for people in rented and rent
free accommodation.

Another way to generate this (or any other) graph is using the drop down menus.
Sometimes, it can easier to fine-tune graphs this way, especially for changing
appearance and adding a legend. However, the Stata code used to generate the
graphs should be copied from the output window and saved in the .do file.

This way, graphs can be easily recreated and amended for different scenarios.

Go to the menu bar and choose Graphics ¥ Choose Bar Chart. You will get
the following window:
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B3 graph bar - Bar charts | =]
Main |Eategnries| itfin I Weightsl Dptionsl Bars I Y awiz I Titles I Legendl Elveralll By I
— Tupe of data Orientatiar
{*' Graph by calculating summary statistics & Werlical
" Graph actual data [asiz] " Horizontal

— Statistics to plot

Statiztic Wariablez
v 1 IMean j Iinc_lab
v 2 IMean j | ihe_nonlab

b IMean j I
3 IMean j I
i IMean j I
: IMean j I
: IMean j I
b IMean j I

mim Bl B B B
el Ll L e e L L

ﬂ m OF. I Cancel | Submit

Then you are interested to specify variable by which categories the mean
income of labour will be displayed in our case, this is tenure:

B graph bar - Bar charts M= B
bain  Categories Iifr‘in | Weightsl Dptiansl Bars I Y ans I Titles I Legendl Dveralll By I

—v Group 1

Grouping wariable:

Itenure LI Properties |

— Group 2

[Erouping wariable;

I ;I Froperties |

— Group 2

Grouping varnable;

I LI Froperties |

Mate; three category groupings are allowed only when graphing on a single statishic of a zingle varnable,

ﬂ m OF. I Cancel Submit
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Last but not least, you need to specify the stacking:
E graph bar - Bar charts =] B3

T I Categoriesl iffiry I ‘weightz Options IBars I T aris | Titles | Legendl Dveralll By I

— Bar optionz
v Stack bars ony variables [ Omit empty cateqaries [bars)
[v¥ Basze bar heights on percentages [T Do not force p axis to include zero

~ Mizzing values

[" Include categories for missing values

[ Exclude obzervations with mizsing values [cazewize deletion]

r— Labeling and legend ophions

[~ Treat v variables az first categony grouping
[ Treat first categony arouping as v variables

[" Label p variables on = axis [advanced]

Froperties |

[” Place categorical axiz on the opposite side

ﬂ ﬂ (1]8 I Cancel I Subrmit |

In the output window, Stata will specify the code that is required to create
manual graphs. Sometimes, it can be easier to create the graph manually, and
adjust the code afterwards, and reuse it for other variables. As usual, the code
should be saved in the .do file to ensure that output can be reproduced.

2.5. Graphs within graphs: the by’ option

In the graph above a bar is produced for each category of the tenure variable rather
than simply producing a single bar for all cases combined: this is done by specifying
that the graph should be made ‘over’ the tenure variable — i.e. over(tenure).
However, another thing which we may wish to do is to produce a separate graph
for each category of a variable, rather than to just produce a separate bar as here —
and this can be done by specifying that the graph should be made ‘by’ a particular
variable.

In the following example we reproduce the above graph of percentage of household
income from different sources over tenure types but in this case we specify
that we wish to produce a separate plot for each region in our dataset —
i.e. by(region) (and over(tenure) within each region). As seen in a previous
example, changing the labels or label size on the x-axis which relate to the
categories of the ‘over’ variable are specified within the brackets relating to the
‘over’ variable. Note too that when graphs are produced ‘by’ a variable as
here, any title, subtitle and notes should be specified within the
brackets relating to the ‘by’ variable — if these are specified as separate
options as in the previous examples then they will be reproduced for each of the
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separate plots, but if they are specified within the ‘by’ variable brackets as here then
they will appear only once in the overall graph.

The graph also has relabelled categories on the x-axis (relabel option); has a
compact style to try and leave more space for the actual plots; we change the legend
label to tidy up the labels on the x-axis; and we add a title to the y-axis. The if-
statement restricts the data displayed to households with up to three persons in
employment and four types of tenures. The syntax to do this is as follows:

graph bar (mean)

if tenure!=. , ///

over (tenure, relabel (1l "Owned" 2
label (labsize (*0.7) alternate)) ///

by (region,
subtitle ("per region")
style (compact))
bar (1,color (orange))

bar (4,color (green))

legend (label (1

label (
label (

3
5

"Rent Free" 3

"Rented" 4

note ("Source: Stata Level 3") ///
percentage stack nofill /77
bar (2,color (blue)) bar(3,color(red)) ///
bar (5,color (black)) ///
"Labour income") label (2 "Non-labour income™)
"Pension income") label (4 "Benefits income") ///

"Investment income"))

/177

ytitle ("Percentage of total household income")

100

100

20406080

20406080

/117

inc_lab inc_nonlab inc pens inc bens inc_inv ///

"Shared")

/117

title ("Stacked bar chart of income source by tenure status")

Stacked bar chart of income source by tenure status

/77

per region
london south_east south_west
| II II |
Owned Rented other Owned Ren other Owned ed other
Rent Free Shared Rent Free Rent Free Shared
midlands north_west north_east

Owned

Rented
Rent Free Shared

other Owned

Rent Free

Rented
Shared

Owned
Rent Free

other

Rented

Shared

[ Labour income
I Pension income

H vestment income

I \on-labour income

B Bcnefits income

Source: Stata Level 3
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2.6. Line graph

Line graphs are typically used to present changes in data over a period of time, for
example a company might plot the number of sales per week where they have data
for a number of weeks. In the following graph we plot the number of cases in the
dataset interviewed in each month. Whilst this could equally well be presented
using a bar graph here we will instead use a line graph.

First we make a simple count variable telling us how many cases there were
interviewed in each month. In the main graph syntax it can be seen that a line graph
is one of a large family of graphs known as twoway graphs in Stata (i.e. two
variables are plotted against each other). In this example, we plot the number of
interviews per month on the y-axis and the interview month on the x-axis. We also
add a main title, titles to the two axes, and specify that we wish the labels along the
x-axis to be the numbered 1-12 for each of the twelve months:

bys int month: egen month count= count (int month)

twoway line month count int month, ///
title ("Number of cases in each month") ///
ytitle ("Number of cases") ///

xtitle ("Interview month") xlabel (1/12)

Number of cases in each month

2000 3000 4000

1000

Interview month

Instead of showing the values along the x-axis we may prefer instead to use the
actual value labels. In the line graph below the xlabel option is amended slightly so
as to use value labels rather than the data values themselves, and these value labels
are alternated along the x-axis and reduced to 80% of their original size to prevent
them from overlapping:

twoway line month count int month, ///
title ("Number of cases in each month") ///

ytitle ("Number of cases") xtitle("Interview month") ///
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xlabel (1/12, valuelabel alternate labsize (*0.8))

Number of cases in each month

2000 3000 4000
L

1000

o

T T T T T T T T T T T T

january march may july september november

february april june august october december
Interview month

Note that you can use line options to make the line dotted, and control its width:
explore further: lcolor (orange) 1lwidth(thick) lpattern (dash).
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2.7. Box and whisker plot

Box and whisker plots are useful as they allow a visual picture of some key elements
of a continuous variable’s range of values. The median, the quartiles, and the
maximum and minimum are five positions often used to describe center and
spread. This summary lies at the heart of box plots. Thus, a box and whisker plot is
typically used to show the median value of a variable as well as its interquartile
range and its range.

In the following example we produce a box plot of the cost at purchase of three
different property types (i.e. ‘over’ house type) — detached houses, semi-detached
houses, and terraced houses. We do not add any other formatting to the graph.

/***** pox & whisker plot - purchase cost for detached, semi-detached and
terraced houses ****/

graph box hhcost if (house type==1 | house type==2 | house type==4), ///
over (house type)

In this box plot, shown below, the blue filled box represents the upper and lower
bounds of the interquartile range whilst the horizontal line within this area
represents the median value. The vertical lines coming from the box (‘whiskers’)
represent the majority of the remaining range of values and the dots beyond the
ends of the whiskers represent extreme outliers. Outliers are calculated as values
exceeding p75+1.5*IQR or less than p25-1.5*IQR where p75 and p25 are the 75th
and 25th percentiles respectively and IQR is the interquartile range. The whiskers
mark the last observations that are not outliers.

H
—e °
b .
[ ]
det'd house/bungalow semi-det'd house/bun terraced house

Additionally, it is possible to produce Stata graphs ‘over’ more than one variable at
a time. For example, we may wish to plot the box plot of total household income
over both house type and whether the house has a garden or not, as we may think
that there is likely to be variation due to both factors. The next box plot produces
this graph, relabelling the house type labels along the x-axis using the relabel
option within the over brackets relating to house type, and alternating the
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positioning of these house type labels using the alternate option (otherwise our
graph could become way too heavy). The sort(1) option within the over brackets
relating to house type requests that bars be presented in ascending order according
to the median value of total household income of each of the three house type
categories. The nooutsides option excludes extreme outliers from the box plot and
this often helps with the scaling of the graph. Note that both over variables have
separate over statements.

Interpretation. The graph shows that (as one would expect) that the median total
household income is highest for the respondents living in detached houses,
although it also shows that on average the ones without a garden tend to have
higher incomes. Additionally, the interquartile range is noticeably wider for the
detached house group which points to a wider income distribution within this
group than within the other house type categories.

/* two over groups specified and no extreme outliers shown */
graph box tot hh inc if (house type==1 | house type==2 | house type==4), ///
over (house type, relabel(l "Detached" 2 "Semi-detached" 3 "Terraced") ///
label (alternate) sort(l)) ///

over (garden) nooutsides

J1 ] T L 1

Terraced Detached Semi-detached
Semi-detached Terraced Detached

yes no
excludes outside values

Again, a ‘by’ option can be introduced if we wished to plot a separate box plot for
different categories of a variable. In the following example separate graphs are
plotted for each region (i.e. by(region)).

e the style is set to compact in order to maximise the space available for the
plots
e extreme outliers are excluded with the nooutsides option
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e house type categories which are not included in the command or which
have no values do not have empty bars made for them (the nofill option)

o finally, the y-axis is given a title, the labels on the y-axis are specified and
horizontal lines across the graphs from the y-axis are requested from
25,000 to 125,000 at intervals of 25,000

graph box tot hh inc ///

if (house type==1 | house type==2 | house type==4), ///

over (house type, relabel(l "Detached" 2 "Semi-detached" 4 "Terraced") ///
sort (1) label (alternate)) ///

by (region, title ("Household income by house type") ///

note ("Source: Stata Level 3") style(compact)) nooutsides nofill ///
ytitle ("Household income") ///

ylabel (0(50000)150000, labsize(small)) ///

yline (0(25000)150000)

Household income by house type
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o
Terraced Detached Terraced Detached Terraced Detached
Semi-detached Semi-detached Semi-detached
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3
3
5
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o

Terraced Detached Terraced Detached Terraced Detached
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excludes outside values excludes outside values excludes outside values

Source: Stata Level 3

The graph shows a large amount of information for each house type in each of the
regions. Naturally, the size of each of the plots is much smaller when producing
graphs ‘by’ variables and so it is necessary to also consider whether the graphs can
be understood clearly.

43



Stata: Statistical analysis and graphs

2.8. Pie chart

Visually presenting data in pie charts can be a simple way of conveying
information, particularly when that information relates to shares of a total from
different sources (in the way that a stacked bar chart is often used).

If we wished to make a pie chart of the number of cases in each house type category
with a title then the syntax would be very simple. Note that in this example we do
not actually specify a main variable — the command understands what we want and
produces the graph of frequencies in each pie as we wished.

graph pie, over (house type) ///

title ("Number of cases of each house type in the dataset")

Number of cases of each house type in the dataset

I detd house/bungalow [ semi-det'd house/bun

I end terraced house [ terraced house

I purpose blt flat<10 I ourpose bt flat >10
converted flat <10 converted flat >10

I incl business prem [ bedsitter under10

I bedsitter 10+ dwellg [ vedsitter single occ
sheltered accommdn other

The next example reproduces this graph but adds in some additional formatting
options: plabel is used to select the slice of the pie which you wish to format and
then to specify what you wish the slice to display, where frequencies (freq) and
percentages (percent) are the most commonly used options. In this syntax we ask
that slices 1, 2 and 3 reveal their percentages. The pie option is also used to add
certain formatting options to particular slices of the pie chart: in this syntax we
specify that we would like to adjust the formatting of slice 3 so that it is red and is
exploded out of the main pie chart. The legend option, as in all graphs, is typically
used to alter the labels in the legend but can also for instance, alter its position on
the graph:

/* Number of cases by tenure, with title, slices showing percentages, slice
3 exploded and in red, and tidy legend titles */

graph pie, over (tenure) ///

title ("Number of cases of each tenure type in the dataset") ///

plabel (1 percent) plabel (2 percent) plabel (3 percent) ///

pie (3,

explode color(red)) ///

legend (label (1 "Owned") label (2 "Rented") label (3 "Rent free") ///

label (4 "Shared") label (5 "Unspec"))

44



Stata: Statistical analysis and graphs

Number of cases of each tenure type in the dataset

B Owned I Rented
I Rentfree T Shared
N Unspec

Using the drop-down menus, the same thing will be performed as:

Main |if.-"in I Weightsl Dptionsl Slices I Titles I Legendl D\-'eralll By I
PFie chart
¥ Graph by categories
" Graph by varables
Category variable: “Yariable: [optional]
tenure LI I j
[ZR] oK | Cancel | Submit |

To choose one slide to explode, you have to go again to Options, choose the
exploding slide and edit it:
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2.9. Kernel density plot

Kernel density plots are another member of the twoway family of Stata graphs and
produce density line plots marking a variable’s distribution. In the following graph
we plot a kernel density graph of total household income only for cases where the
house is owned. Extreme outliers act to stretch out the x-axis and effectively
compress the ‘main’ area of the data where the vast majority of the data lie into a
smaller space. For this reason the following graph only includes cases where total
household income is below 150,000 and this is 99% of cases. Other formatting
options relating to titles and label which are by now familiar are also specified:

twoway kdensity tot hh inc ///
if tenure== "owned" & tot _hh inc<150000, ///
title ("Graph of income distribution for owned houses") ///

ytitle ("Kernel density") xtitle ("Household income")

Interpretation. The kernel density plot takes the data and displays the frequency
of cases at each value in the style of a line chart: where the curve is far from the x-
axis this means that the density of cases is high at this value, in other words that
there is a relatively large number of cases in the data at this value in terms of the
proportion of the total number of cases in the data (which the area under the curve
represents). Where the curve is close to the x-axis this means that there is a low
density of cases at this value in the data (e.g. incomes greater than 100,000 in this
example). What this kernel density plot shows is that the bulk of the graph’s total
population (i.e. owned houses with incomes below 150,000) have incomes of
around 35,000 and that the majority of the cases have incomes between around
20,000-50,000. There are relatively few cases with incomes larger than around
90,000. There is also an interesting dip in density at very low levels of income,
which would warrant closer examination.

Graph of income distribution for owned houses

T T T
50000 100000 150000
Household income
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2.10. Overlaying multiple graphs on the same plot

The kernel density plot above presented data for just one category — houses which
were owned. It is also possible with Stata graphics to lay multiple plots on top of
each other in the same graph area. This can be done with many graph types and
this example shows this feature with the kernel density plots.

In the following graph we place four kernel density plots of total household income
for different house tenures onto the same graph area. Most of the options have been
seen previously and will not be discussed further.

Several plots are added onto the same graph by enclosing the kdensity command
into brackets, and repeating it for the separate graphs, as shown below. Common
features, such as the graph title, axis titles and legend only need to be specified
once.

The other options within the brackets are specific to each separate graph, as the if
statements. It would also be possible to specify colours and line pattern.

twoway (kdensity tot hh inc if tenure== 1 & tot _hh inc<150000 ///
/* 1lst graph - owned*/ , ///
legend (label (1 "Owned") label (2 "Rent free") label (3 "Rented") ///
label (4 "Shared") label (5 "Unspec")) ///
title ("Graph of income distribution by tenure type") ///
ytitle ("Kernel density") xtitle("Household income") ) ///
( kdensity tot hh inc if tenure==2 & tot hh inc<150000 ///
/* 2nd graph laid on top - rent free*/ ) ///
( kdensity tot hh inc if tenure==3 & tot hh inc<150000 ///
/* 3rd graph laid on top - rented*/ ) ///
( kdensity tot hh inc if tenure==4 & tot _hh inc<150000 ///
/* 4th graph laid on top - shared*/ )

Another option is to use vertical lines ( || ) between the separate graph commands,
instead of the brackets (see below).

twoway kdensity tot hh inc if tenure== 1 & tot hh inc<150000 ///
/* 1lst graph - owned*/ , ///
legend (label (1 "Owned") label (2 "Rent free") label (3 "Rented") ///
label (4 "Shared") label (5 "Unspec")) ///
title ("Graph of income distribution by tenure type") ///
ytitle ("Kernel density") xtitle ("Household income") /77
|| kdensity tot hh inc if tenure==2 & tot hh inc<150000 ///
/* 2nd graph laid on top - rent free*/ ///
|| kdensity tot hh inc if tenure==3 & tot hh inc<150000 ///
/* 3rd graph laid on top - rented*/ /]
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|| kdensity tot hh inc if tenure==4 & tot hh inc<150000 ///
/* 4th graph laid on top - shared*/

In contrast to the previous example, the graph which is produced contains four
kernel density plots, each of which is based on one of the four blocks of graph
syntax above.

Interpretation. The graph shows that of all the tenure categories there is a higher
proportion (density) of rented households with lower household incomes
compared to the other tenure groups. Unsurprisingly, the blue curve relating to
houses which are owned is the highest curve at higher levels of household income,
meaning that a higher proportion of owned houses have relatively larger incomes
compared to the other tenure groups.

Graph of income distribution by tenure type

o +
T T T T
0 50000 100000 150000
Household income
Owned Rent free
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2.11. Scatter graphs

The final graph type covered in this course book is another member of the twoway
family of Stata graphs: scatter graphs. Scatters are a useful way to plot the values
of two interval variables against each other and can be understood as a visual way
to approach correlations between variables. For example, we could scatter income
in one year against income in the next year to see how stable our data are over time
(i.e. how close to a 45 degree line does the data appear?).

In this first example we scatter monthly mortgage and household value and, as in
the previous example, we effectively make multiple graphs and lay them on top of
each other on the same graph area. The first block of syntax produces a scatter for
all cases in region 1 (London) whilst the second block of syntax specifies the various
title and legend label options for the graph area as a whole. Note that within this
block of syntax we specify that we would like the points relating to this first plot
(i.e. cases in London) to be blue — this is done using the mlabel(blue)option to
change the colour of the markers. Common options for markers are mlabel for
marker labels, msize for marker size, and msymbol for marker style (squares,
triangles, circles, etc). Note again that each separate scatter command is enclosed
by brackets, as explained above. This second graph is a scatter of the same variables
for cases in region 2 (South East) and the mcolor option is specified in this plot to
show these cases in red. The third graph shows cases in region 3 (South West) in
green.

/* scatter of monthly mortgage vs household value for three regions separately

*/
twoway (scatter monthly mortgage hhvalue ///

if region==1 & hhvalue < 1000000, mcolor (blue) ///

title("Scatter of monthly mortgage against household value") ///

subtitle ("by region"™) ///

ytitle ("Last total monthly mortgage payment") ///

xtitle ("Value of household") ///

legend (label (1 "London") label (2 "South East") label (3 "South West"))) ///
(scatter monthly mortgage hhcost if region==2, mcolor (red) msymbol (X)) ///
(scatter monthly mortgage hhcost if region==3, ///

mcolor (green) msymbol (diamond) )

Interpretation. The graph which is produced shows that most data points are
clustered towards the bottom left of the plot with lower values both of properties
and monthly repayments. There are relatively few cases to the right and the top of
the plot — i.e. those with more expensive houses and with larger repayments — but
those cases which are in found here are found in London. If we wished to check a
particular case (for example, we may be worried about these outliers) then the
mlabel option could be included so as to identify the outlier cases.
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Different types of graphs can be combined using the twoway command. The
following code will produce a scatter plot as before, but plot the line of best fit (Ifit):

twoway

(scatter monthly mortgage hhvalue) ///

(1fit monthly mortgage hhvalue) if region==

T T T
500000 1000000 1500000
value of property: home owners

’ ® |ast total monthly mortgage payment Fitted values

Similarly, this option can also be used following a regression to plot actual and
predicted values and to include a line of best fit to the data points. Again this can
be helpful in identifying unusual outlier cases which do not fit the model well. In
the following example a linear regression is run and the predict postestimation
command is specified to produce the predicted_hhvalue variable based on the

model.

51



Stata: Statistical analysis and graphs

capture drop predict*
xi: regress hhvalue inc* rooms i.tenure

predict predicted hhvalue

A scatter diagram is then produced which plots the actual against predicted values
and adds a title, note and titles on the x- and y-axes. Marker labels are also
requested. On the same graph area a separate Ifit (line fit) plot is produced between
these two variables and this plots the line of best fit for these data points. This can
be a useful part of regression diagnostics to assess how well the model fits the data,
how well actual and predicted values match, and which types of cases tend to be
outliers.

twoway scatter hhvalue predicted hhvalue, ///

title("Scatter of household value vs. predicted household value") ///
note ("Source: Stata Level 3") ///

ytitle ("Household value") xtitle ("Predicted household value") ///
legend(label (1 "Data point"™) label (2 "Fitted line")) ///

mlabel (hhid) || ///

1fit hhvalue predicted hhvalue

Scatter of household value against predicted household value
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Source: Stata Level 3
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2.12. Matrix scatters

Finally, a variant of scatter graphs is the matrix graph and this can be understood
as a visual representation through scatter plots of a correlation coefficient table. It
is best explained with an example. In the following example we produce a matrix
graph of four variables: household value, total household income, labour income
and monthly mortgage. We give the graph a title and reduce its scale to 70% of its
original size — this is useful when labels or titles are too large for the graph area or
are overlapping:

graph matrix hhvalue tot hh inc inc_lab monthly mortgage, ///

title("Matrix graph of household wvalue, household income, labour
income and monthly mortgage") ///

scale (*0.7) ///

saving ($graph\matrix scatter2)

Matrix graph of household value, household income, labour income and monthly mortgage
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The layout of the graph which is produced can best be understood by thinking
about what the table of correlation coefficients between these four variables would
look like. Interpretation. Across the diagonal are the variables included in the
graph, with x- and y-variables of each mini-scatter plot changing according to the
location on the graph. For example, if cell two is the left-most graph on the top row
then this can be seen to be a scatter of household value (y-axis) against total
household income (x-axis). Cell three (the central scatter of the three on the top
row) is a scatter of household value (y-axis) against labour income (x-axis).
Likewise, the central scatter of the three on the bottom row relates to total
household income (x-axis) against last total monthly mortgage payment (y-axis).
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Matrix graphs can be a useful way to look at and convey the bivariate relationships
between multiple variables in a single graph.

2.13. Saving and opening graphs

Graphs are saved in the same way as data files except that they have the .gph ending
rather than .dta. To save the matrix scatter we have just made into our work folder
we would type:

graph save "S$Swork\matrix scatter.gph",replace

It is not possible to use the /// break in file paths. It is also possible to add the
saving option to the syntax in order to save the graph from within the syntax to
make the graph.

Once this graph is saved it can be opened again either by double clicking it from
within the folder or by typing:

graph use "S$work\matrix scatter.gph"

The above graph save command saves the graphs in the Stata graph format, and
Stata will have to be opened to view the graph.

It is also possible to save the graphs in other graphics formats, such as .png. The
following commands are used for this:

graph export "S$graphs\matrix scatter.png",replace

2.14. Editing graphs

This course has focused on writing the underlying syntax to flexibly produce a
range of graphs. It can be seen that with this flexibility in graph specification can
come a relatively dense graph syntax containing various graph options. It can be
frustratingly difficult to manipulate the syntax correctly in order to make what you
would consider to be relatively simply changes to the graph until you are
comfortable with writing syntax for graphs. Indeed, graphics might even be an area
where people may wish to experiment with using menus and then once run to right-
click the review window to get the syntax into a .do file. The advantage of getting
to grips with graph syntax is that once the syntax is correctly specified it is possible
to reproduce this (or similar) graphs quickly. It is possible to click with the right
button on the graph after producing it and to make manual changes to the graph
(with the Graph Editor])- although these manual changes do not make their way

into the .do file. We will have a standard toolbar, a contextual toolbar like in any
picture modifying tool. This can be helpful although these manual interactions are
inevitably slower and less easy to replicate compared with proficient syntax
writing.
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Exercise 3 Stata Graphs (15 mins)

e Use the bp_data.dta saved in "H:\StataLevel3\Raw data" (fictional data)
o Apply some of the commands to produce and modify graphs

Task 1

Task 2

Task 3

Task 4

Create a horizontal bar chart of the mean follow-up blood pressure data
(bp_after) for each drug type (trt).

Hint: examples of horizontal bar charts are provided in section 3.3.

Make your graph more user-friendly by giving your graph a title.
Hint: use the ‘title’ option.

Use a box and whisker plot to show how the follow-up blood pressure
(bp_after) is associated with the type of drug received (trt).
Hint: examples of box and whisker plots are shown in section 3.7.

Change the code to label the drug categories on the x-axis (drug B
should be labelled “BBB”, drug A “AAA”), add a title for the graph and
a title on the y-axis, and do not show extreme outliers.

Create a scatter plot of baseline blood pressure (bp_before) on the x-
axis against follow-up blood pressure (bp after) on the y-axis.
Hint: examples of scatter plots are shown in section 3.11.

Then show patients on drug B with green markers, and as “X” and show
patients on drug A with red markers and as diamonds.

Hint: You are effectively trying to plot two graphs laid on top of each
other. Information on overlaying graphs is provided in section 3.10.

Also add a graph title, titles on the y-axis and x-axis, and rename the
legend labels to correspond to the two types of drugs received.

Produce a bar graph (vertical bars) showing baseline (bp_before) and
follow-up blood pressure (bp_after) for each drug allocation.

Add a title, amend the legend to using the labels “Baseline BP” and
“Follow-up BP”, respectively. Also label the y-axis “Blood pressure
values”.

Add the relevant code to turn the first bar grey and the second bar
black.

Remove the colour options, and see how the graph changes if you use
the options scheme(s1mono) and scheme (s2mono).

Finally, save the graph in "H:\StataLevel3\Graphs" in .png format.
Name the file bp graph.

Hint: Information about saving graphs can be found in section 3.13.
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3 Survey analysis in Stata

3.1. Why use Stata’s survey commands?

If we have a survey dataset and we wish to make more general claims not about the
survey sample but about the population as a whole which that sample represents
then we need to use specific survey commands to analyse the data. Most basically,
this is done by applying weights to any analyses in order to correct, for example,
for sampling and non-response and to make inferences about the total population.
More complex sampling designs may also require us to take account of survey data
which is clustered and/or stratified. Not accounting for these features where they
apply is likely to lead to inaccurate, i.e. biased estimates of point estimates and/or
variance (hence, confidence intervals).

Stata has a variety of simple commands to analyse survey data — svy commands -
and these can handle complex survey data in which the survey analysis needs to
take account of the fact that the survey data are weighted, stratified and clustered,
or some combination thereof. In order for Stata’s survey commands to work
correctly it is first necessary to set Stata up for survey analyses by:

1. identifying the relevant survey variables
2. identifying the weight to use

3. identifying the primary sampling unit (PSU) from which the data were sampled
(e.g. sampling clustered by postcode sector or area)

4. identifying strata for which a particular sample is desired in order to ensure a
‘representative’ sample (e.g. region, ethnicity or income group).

The estimation of point estimates (e.g. survey means) will be correct if only the
weight is set, but in order to maximise the accuracy of the estimates of variance
and standard errors it is necessary to identify as many of these three variables as
possible (where they are relevant) when setting up the survey analysis in Stata. In
order to know which variables ought to be defined as weights, primary sampling
unit (PSU) and strata it is usually necessary to consult the metadata or the
documentation that comes with the survey data and this will usually have a section
dedicated to these issues.

3.2. Setting up Stata for survey analyses

In order to set up Stata to analyse survey data the syntax is as follows: Survey
commands are one area where the syntax structure has changed slightly between
versions 8 and 9 to 11 of Stata and so it is worthwhile setting up the survey
commands for the particular version you will be working on. Here this is done for
current versions of Stata (versions 11 to 13). The general syntax to set up survey
data is:

svyset PSU [pweight= weight variable], strata(strata variable, if any) ///

fpc (finite population correction, if any)
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In our case therefore we have a weight variable and a region variable which was the
primary sampling unit:

use "Sraw\bhps for class.dta"
svyset area [pweight=hh wt2]

To check the survey setup you use the svydes command and to clear all survey
setting so that you can set them differently the syntax is svyset,clear.

Once set up, Stata can perform most of the analysis commands that you would
normally use, but for survey data. In terms of descriptive statistics the most
common commands are svy:mean (survey means), svy:prop (survey proportions),
svy:ratio (survey ratios), svy:total (survey totals) and svy:tabulate (survey
tabulate). A wide range of regression commands can also be used as survey
commands, for example svy:regress (linear regression with survey data),
svy:logistic (logistic regression with survey data, reporting odds ratios) and a wide
range of others.

3.3. Survey means

Let us assume we want to use the survey data to estimate mean total household
income in England (i.e the wider ‘population’ to which the survey data relate). To
do this the syntax would be:

svy:mean tot hh inc

The output produced shows that 8602 observations were used in the calculation
(all of our dataset) and that the total weighted population size is around 18 million
households (1797429), which looks reasonable.

The survey mean of total household income in the dataset is reported as 34,291.
The output also reports the standard error and confidence around this point
estimate, with the 95% confidence interval in this case ranging from 33,507 to

35,076.
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svy:mean tot hh inc

(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 8602
Number of PSUs = 156 Population size = 1797429
Design df = 155

Linearized
Mean Std. Err. [95% Conf. Interval]
tot hh inc 34291.61 396.9596 33507.46 35075.76

Just to compare, below we show the standard mean of total household income
which is produced using the summarize command. This calculation therefore
shows only the data within the sample: it does not make use of Stata’s survey
commands and so cannot tell us anything about the population as a whole beyond
this particular survey. It can be seen that the unweighted mean figure is somewhat
higher than that calculated using Stata’s survey commands.

summ tot hh inc

summ tot hh inc

Variable | Obs Mean Std. Dev. Min Max

tot _hh inc | 8602 35174.27 27392.58 0 1013920

3.4. Survey proportions

Having calculated the mean total household income using the survey commands
let us apply the svy:prop command (survey proportions) to calculate the proportion
of the population as a whole who live in poverty. A simplistic definition of poverty
will be used, namely below 60% mean income:

/**svy:prop - survey proportions**/

/*first generate a new poorflag variable which is based on survey
mean of the data and is numeric: l=deprived, O=not deprived*/

gen deprived flag=0
replace deprived flag=1l if tot hh inc < (0.6 * 34291)

/*svy:prop - now calculate survey proportions*/

svy:prop deprived flag

The following output is produced and this tells us that in the population as a whole
we can estimate on the basis of this survey that 28% of households are poor based
on this (admittedly crude) definition of poverty, and again the 95% confidence
intervals are reported for each of these point estimates.
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svy:prop deprived flag
(running proportion on estimation sample)

Survey: Proportion estimation

Number of strata = 1 Number of obs = 8602
Number of PSUs = 156 Population size = 1797429
Design df = 155
Linearized
Proportion Std. Err. [95% Conf. Interval]
deprived flag
0 .7172998 .0073697 .7027418 .7318579
1 .2827002 .0073697 .2681421 .2972582

3.5. Running survey commands within subgroups

It is also possible to combine survey commands with ‘over’ groups. Therefore, if we
wanted to calculate mean total household income for each region and then to
calculate the proportion of households which were poor according to their own
regional poverty line then we would be able to do this as follows:

/**combining survey commands over bygroups**/

svy: mean tot hh inc, over(region)

This gives us survey means for each region and it is not surprising to find that the
mean income in London is the largest whilst that for the North East is the lowest:

Survey: Mean estimation

Number of strata = 1 Number of obs = 4055
Number of PSUs = 108 Population size = 841600
Design df = 107
london: region = london
south east: region = south east
south west: region = south west

midlands: region = midlands
north west: region = north west
north east: region = north east

Linearized

Over Mean Std. Err. [95% Conf. Intervall]
tot_hh inc

london 40403.12 1735.971 36961.76 43844.48
south east 37097.75 843.2371 35426.13 38769.36
south west 34991.65 1452.465 32112.31 37870.99
midlands 32958.86 1210.694 30558.8 35358.92
north west 35103.45 957.8364 33204.65 37002.25
north east 32724.39 899.4504 30941.34 34507.45
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/* crea
gen reg
replace
replace
replace
replace
replace

replace

/* and

SVYy:pro

Having calculated regional means, we can now make a poor flag specific to each
region and then calculate survey proportions of poor households based on these
regionally defined poverty thresholds. The syntax we use here is quite cuambersome
and it would be possible in reality to use matrices and macros to access the results
saved by the svy:mean automatically and make use of them. This is a more
advanced topic and is covered in the Stata Introduction to Stata programming
course, but it is worth highlighting that this is possible (and useful).

te regional poverty flag */

_poor=0

reg poor=1 if tot hh inc < (0.6 * 40403) & region==1 /*london*/

reg poor=1 if tot hh inc < (0.6 * 37097) & region==2 /*south east*/
reg poor=1 if tot hh inc < (0.6 * 34991) & region==3 /*south west*/
reg poor=1 if tot hh inc < (0.6 * 32958) & region==4 /*midlands*/
reg poor=1 if tot hh inc < (0.6 * 35103) & region==5 /*north west*/

reg poor=1 if tot hh inc < (0.6 * 32724) & region==6 /*north east*/

calculate regional proportions in poverty */

p reg poor, over (region)

This syntax produces the following output. The number of observations used is
shown in the top right corner — note that around half of our dataset have a missing
value for the region variable and so were not used in the calculation, and in reality
we should investigate this further as this could lead to biased estimates. The
number of PSUs is listed as 108 (i.e. we have 108 different values in the ‘area’
variable within which the sample is clustered), and the labels for the table are
shown: _prop_1 means the household is not poor and _prop_2 means that the
household is poor (the top part of the main body of the output shows these labels).
Based on the regionally defined poverty thresholds these output show slight
differences in the point estimates of the proportion of households poor in each
region, although the differences are small and the confidence intervals are
relatively wide.
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svy:prop reg deprived, over (region)

(running proportion on estimation sample)

Survey: Proportion estimation

Number of strata = 1 Number of obs = 4055
Number of PSUs = 108 Population size = 841600
Design df = 107
_prop_1l: reg deprived = 0
_prop_ 2: reg deprived = 1
london: region = london
south east: region = south east
south west: region = south west
midlands: region = midlands
north west: region = north west
north east: region = north east
Linearized
Over Proportion Std. Err. [95% Conf. Intervall]
_prop 1
london .7099829 .0216196 .6671247 .7528412
south east .7009363 .0162479 .6687268 .7331459
south west .7179271 .0281903 .6620432 .773811
midlands .7083921 .0272613 .6543498 .7624344
north west .7111152 .0234929 .6645433 .757687
north east .7252398 .0190834 .6874091 .7630705
_prop_2
london .2900171 .0216196 .2471588 .3328753
south east .2990637 .0162479 .2668541 .3312732
south west .2820729 .0281903 .226189 .3379568
midlands .2916079 .0272613 .2375656 .3456502
north west .2888848 .0234929 .242313 .3354567
north east .2747602 .0190834 .2369295 .3125909

3.6. Survey totals

svy:total is another commonly used survey command and calculates survey totals.
The dataset we are using has a variable called ‘kids’ which relates to the number of
children in the household. If we wanted to create a survey total of the total number
of children in each region then the syntax would be:

svy:total kids, over(region)

and if we wanted to calculate a survey total of the number of poor children in each
region then we could run the command ‘over’ both region and poor_ flag:

svy:total kids, over (deprived flag region)

The output produced from this syntax is shown below. The top section lists the
strata (we did not set a strata variable and so we only have one strata), PSUs, the
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number of observations used, weighted population size (of children in this case),
and the degrees of freedom (PSUs — 1). Below this, the output lists the labels which
are used in the main body of the output: Stata creates one subpopulation for each
group within the over option. In this example we used two variables in the over
command and so we have 12 subpopulations (non-poor in each of the six regions
and poor in each of the six regions). Hence, this list shows that non-poor children
in London are labelled in the main output below as subpopulation 1. Looking down
the main table of results, the output shows that there are estimated to be 275,101
non-poor children in London (subpopulation one), though in this instance there
are wide confidence intervals around this point estimate.

svy:total kids, over (deprived flag region)

(running total on estimation sample)

Survey: Total estimation

Number of strata = 1 Number of obs = 4030
Number of PSUs = 108 Population size = 838837
Design df = 107
Over: deprived flag region
_subpop_1: 0 london
_subpop 2: 0 south east
_subpop 3: 0 south west
_subpop_4: 0 midlands
_subpop_5: 0 north west
_subpop 6: 0 north east
_subpop_ 7: 1 london
_subpop 8: 1 south east
_subpop 9: 1 south west
_subpop 10: 1 midlands
_subpop_11: 1 north west
_subpop 12: 1 north east
Linearized
Over Total Std. Err. [95% Conf. Intervall]
kids
_subpop_1 28169.74 4489.94 19268.95 37070.52
__subpop_2 139645.6 12817.49 114236.5 165054.8
__subpop_3 32362.49 5118.979 22214.71 42510.27
__subpop_4 41516.23 8317.24 25028.27 58004.19
__subpop_5 41163.61 7418.698 26456.91 55870.32
_subpop_6 59286.17 6808.688 45788.74 72783.6
__subpop_7 8479.56 2314.243 3891.843 13067.28
__subpop_8 18321.51 3333.764 11712.71 24930.31
__subpop_9 8597.257 2391.162 3857.057 13337.46
_subpop_ 10 6092.647 1982.88 2161.818 10023.48
_subpop_ 11 8347.849 2109.829 4165.359 12530.34
_subpop_ 12 9010.183 2016.152 5013.398 13006.97
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3.7. Survey ratios

svy:ratio is used to calculate survey ratios. In addition to the ‘kids’ variable which
lists the number of children in the household our dataset also contains a variable
called ‘wage’ which denotes the number of working age persons in the household.
Using these two variables we can use svy:ratio to calculate a survey ratio of the
child dependency ratio in each region. The child dependency ratio is a measure of
the ratio between children (who are assumed to be economically unproductive in
the labour market) and working age adults (who are the potential economically
active persons in the household). Larger ratios are taken to imply a greater burden
on the economically active to support the economically inactive (in this case just
children as we ignore the elderly). Formally, the child dependency ratio is usually
calculated as:

(number of children / number of working age adults) * 100

We would calculate this using svy:ratio with the following syntax:

svy:ratio kids wage, over (region)

(running ratio on estimation sample)

Survey: Ratio estimation

Number of strata = 1 Number of obs = 4030
Number of PSUs = 108 Population size = 838837
Design df = 107
_ratio 1: kids/wage
london: region = london
south east: region = south east
south west: region = south west
midlands: region = midlands
north west: region = north west
north east: region = north east
Linearized
Over Ratio Std. Err. [95% Conf. Interval]
_ratio 1
london .2969649 .05107 .1957245 .3982053
south east .3374855 .0271269 .2837096 .3912615
south west .3246024 .0554292 .2147206 .4344843
midlands .3917171 .0439216 .3046476 .4787865
north west .3245649 .0350828 .2550173 .3941124
north east .3368389 .0388612 .2598012 .4138766

This shows that the survey ratio of children to working age adults is highest in the
Midlands — estimated to be 39.17% and with the 95% confidence interval ranging
from 33.25% t0 45.09% - and lowest in London at 29.70%. Naturally, if we wanted
to calculate the child dependency ratio for the country as a whole then we would
simply exclude the over option.
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3.8. Survey tabulate

svy:tabulate is used to run survey tables of frequencies and percentages, and both
one and two-way tables can be generated. The following syntax creates a one-way
table of household size and two common options are specified: the count option
requests survey counts for each cell and the cell option requests survey proportions

for each cell. The output produced looks as follows:

svy:tabulate hhsize,

count cell

. svy:tabulate hhsize, count cell

(running tabulate on

estimation sample)

Number of strata = 1 Number of obs 8602
Number of PSUs = 156 Population size 1797428.8
Design df 155
number of
persons
in
household count ©proportions
1 5.3e+05 .2972
2 5.9e+05 .3306
3 2.7e+05 .152
4 2.7e+05 .1514
5 9.2e+04 .051
6 2.1le+04 .0119
7 6690 .0037
8 1896 .0011
9 1168 6.5e-04
10 151.5 8.4e-05
11 379.5 2.1le-04
13 239.3 1.3e-04
Total 1.8e+06 1
Key: count = weighted counts
propor~s = cell proportions

The top right of the output lists the number of observations used in the calculation
(all of our dataset) and gives the total population size (i.e. an estimate of all
households in the population in this case). In the main output table estimates of
survey counts and of survey proportions are given. This output shows that it is
estimated that there are just under 1900 households in the population which have
eight people and that this constitutes 0.01% of all households in the population as
a whole. If we wanted these data by region then the over(region) option could be
added.

It is possible to obtain confidence intervals around these point estimates, but if
requesting confidence intervals then syntax options are restricted. Therefore, to
obtain survey counts with confidence intervals the syntax would be:

svy:tab hhsize, count ci
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svy:tab can also be used to produce two-way survey tables. For example, if we
wished to produce a survey table of region against garden and to report survey
estimates for cell counts, cell proportions, column percentages and row
percentages then the syntax would be:

svy:tab region garden,

Number of strata
Number of PSUs

1
106

RECODE of
regioncod
e (region
/
metropoli
tan area accom: has terrace/garden
) yes no Total
london 7.3e+04 9507 8.3e+04
.0917 .0119 .1036
.8852 .1148 1
.0977 .1955 .1036
south ea 2.9e+05 1.6e+04 3.1e+05
.3615 .0205 .382
.9463 .0537 1
.3849 .3375 .382
south we 8.3e+04 3723 8.6e+04
.1035 .0047 .1082
.957 .043 1
L1102 .0766 .1082
midlands 7.8e+04 3940 8.2e+04
.097 .0049 .102
L9517 .0483 1
.1033 .081 .102
north we 9.5e+04 7876 1.0e+05
.1183 .0098 .1282
L9231 .0769 1
.126 .162 .1282
north ea 1.3e+05 7168 1.4e+05
L1671 .009 L1761
. 9491 .0509 1
L1779 L1474 L1761
Total 7.5e+05 4.9e+04 8.0e+05
.9392 .0608 1
.9392 .0608 1
1 1 1
Key: weighted counts
cell proportions
row proportions
column proportions
Pearson:
Uncorrected chi2 (5) =
Design-based F(4.07, 427.67) =

28.3689
4.7358
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It can be seen that not all of the cases are used in the calculation due to many
missing values on one or other of the variables — if this were a real research analysis
we would want to investigate this further to see why there were so many missing
values as this may bias results. At the bottom of the output the Chi-square test is
reported and in this case the differences between the cells are statistically
significant. Also at the bottom of the output Stata lists each element of the cells: at
the top of each cell are weighted counts, then cell proportions, next are row
proportions and at the bottom of each cell are column proportions. Looking at the
top left cell of the main table, therefore, this relates to houses in London which
have a garden. This cell shows, i.e. that it is estimated that there are 720,000
houses in London with a garden, approximately 88.5% of houses in London, and
that 9.77% of houses with a garden are in London. Household in London that have
a garden make up 9.17% or all households. As these are survey analyses, these
findings do of course relate to estimates for the general population and not just for
the sample data.

3.9. Survey regression

Stata’s survey commands also work with a range of estimation commands (regress,
logit, probit, poisson, etc) in just the same way as their ‘normal’ (i.e. non-survey)
usage, and predict can also be used as a postestimation command in just the same
way (see Statistics section above for a discussion of predict). Therefore, to fit a
linear regression model with food expenditure as the dependent variable and total
household income and the number of rooms (both interval variables) as the
explanatory variables the syntax would be:

svy:regress exp food tot hh inc rooms

This produces the following output, the interpretation of which is the same as
outlined above in the Statistics section of this course:

. svy:regress exp food tot hh inc rooms
(running regress on estimation sample)

Survey: Linear regression

Number of strata = 1 Number of obs = 8194
Number of PSUs = 156 Population size = 1712793.2
Design df = 155
F( 2, 154) = 593.53
Prob > F = 0.0000
R-squared = 0.2702
Linearized
exp_ food Coef. Std. Err. t P>t [95% Conf. Interval]
tot hh inc .0024588 .0005064 4.86 0.000 .0014585 .0034591
rooms 47.72532 3.657542 13.05 0.000 40.50026 54.95038
_cons 319.8874 8.920803 35.86 0.000 302.2654 337.5095

As before, the i. code needs to be added for categorical variables.

svy: regress exp food tot hh inc rooms i.garden
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The commands for changing the reference group, and interpreting the output are
all exactly the same as outlined in the statistics section on regression models earlier
in this course.

3.10. Focussing on subpopulations in survey analyses

Above we have made use of the ‘over’ option to carry out analyses across multiple
sub-groups of interest. If we were interested not in multiple sub-groups of a
variable (e.g. gender) but only in one particular sub-group (e.g. women) then the
‘subpop’ option can be used to calculate survey estimates for this single sub-group.
The Stata documentation outlines that in order to correctly compute estimates of
variance for subgroups it is necessary to use the ‘subpop’ option and not to simply
restrict the calculation by including an ‘if’ condition as doing so will lead to
incorrect estimates of variance (and therefore of confidence intervals). Instead the
subpop( ) option is recommended.

In order for subpop to work, the sub-population of interest (e.g women) should be
coded ‘1, all other cases should be coded ‘0’, and cases with missing values should
be coded missing (i.e. ‘.’).

Let us assume that we are only interested in childless households and that we wish
to use the survey commands to calculate the mean total household income of this
particular subpopulation of interest. First we would need to generate a binary
variable to identify the subpopulation of interest (i.e. childless households in this
example):

/* generate a children flag for the subpop option to take: our
interest 1is in childless households so these take the wvalue 1,
missing vales are coded missing and all other values are coded 0 */

gen children flag=.
replace children flag=0 if kids >0 & kids != .
replace children flag=1l if kids==

Next we run the syntax including the subpopulation option. Here we combine
subpop with the over(region) option to focus on childless households in each
region separately:

svy: subpop(children flag): mean tot hh inc, over(region)

The output produced is shown below. It shows in the top right corner that 4029
cases were included in the calculation, reflecting missing values across the three
variables used in the syntax (particularly the region variable). Below Stata lists the
labelling of the ‘over’ subgroups as they are shown in the main table of results (in
our case each of the regions). The main results table provides survey means,
standard errors and confidence intervals around the point estimates. These data
show, for example, that the mean total household income of childless households
in London is 38,911 with a 95% confidence interval ranging from 36,204 to 41,617.
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svy, subpop(kids flag): mean tot hh inc, over(region)
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 5452
Number of PSUs = 156 Population size = 1122904
Subpop. no. obs = 2767
Subpop. size = 606548
Design df = 155
london: region = london
south east: region = south east
south west: region = south west
midlands: region = midlands
north west: region = north west
north east: region = north east
Linearized
Over Mean Std. Err. [95% Conf. Interval]
tot _hh inc
london 38911.11 1903.658 35150.65 42671.58
south east 34851.92 1134.216 32611.41 37092.44
south west 32845.74 1279.856 30317.53 35373.95
midlands 30058.62 1391.412 27310.04 32807.2
north west 33299.71 1013.427 31297.8 35301.63
north east 31471.07 1200.362 29099.9 33842.25

3.11. Postestimation commands for survey analysis

Postestimation commands can also be used with survey commands: predict, test
and lincom are typically the most commonly used.

3.12. Predict

Predict can be used in just the same way as described earlier in the Statistics section
of this course and creates fitted values based on model coefficients as well as
residuals and other options. Hence, it is possible to run a survey regression and
then use the predict command to create a predicted (or fitted) estimate of the
dependent variable in the model for each case in the dataset. See the section on
predict in the postestimation section of the Statistics part of this course for further
details.

3.13. Test

Test can also be used in the same way as with non-survey commands in order, for
example, to test the statistical significance of the difference between regression
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coefficients. See the section on tests in the postestimation section of the statistics
part of this course for further details.

3.14. Lincom

Lincom is used to test the difference between survey estimates (means, ratios, etc).
For example, lincom could be used following a survey mean command to test the
difference between two survey means, and hence lincom can in this context be
understood as a t-test for survey data:

svy:mean tot hh inc, over (region)

which gives the following output:

svy:mean tot hh inc, over (region)

(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 4055
Number of PSUs = 108 Population size = 841600
Design df = 107
london: region = london
south east: region = south east
south west: region = south west
midlands: region = midlands
north west: region = north west
north east: region = north east

Linearized
Over Mean Std. Err. [95% Conf. Interval]

tot_hh inc

london 40403.12 1735.971 36961.76 43844.48
south east 37097.75 843.2371 35426.13 38769.36
south west 34991.65 1452.465 32112.31 37870.99

midlands 32958.86 1210.694 30558.8 35358.92
north west 35103.45 957.8364 33204.65 37002.25
north east 32724.39 899.4504 30941.34 34507.45

It looks like the means for London and the Midlands are different to one another,
but assume we wish to test whether this difference can be considered to be
statistically significant. There are two main ways to do this.

If we wanted to test the difference of survey means (i.e. we wanted to run a t-test
on survey data) then we can use lincom to do this:

svy:mean tot hh inc, over (region)

lincom [tot hh inc]london - [tot hh inc]north east
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The output of the lincom command, shown below, suggests that the difference
between the two survey means is statistically significant at the 5% level.

lincom [tot hh inc]london - [tot hh inclnorth east

(1) [tot hh inc]london - [tot hh inclnorth east = 0
Mean Coef. Std. Err. t P>t [95% Conf. Interval]
(1) 7678.732 1896.793 4.05 0.000 3918.561 11438.9

Alternatively, if we wanted to test the equality of the means for London and the
Midlands then we could use test to do this:

test [tot hh inc]london = [tot hh inc]midlands
The output, below, suggests that the two survey means are not equal.

test [tot _hh inc]llondon = [tot _hh inc]midlands
Adjusted Wald test
(1) [tot hh inc]london - [tot hh inc]lmidlands = 0

F( 1, 107) 12.37
Prob > F = 0.0006
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Exercise 4 Survey commands (15 mins)
e Use the bp_data.dta saved in "H:\StataLevel3\Raw data" (fictional data)

o Apply some of the survey commands that were introduced in the session

o Survey commands would not usually be applied to clinical trial datasets. This
exercise is merely to demonstrate how these commands work.

Task 1

e Use svyset to setup Stata to analyse this survey data using the weight
variable ‘id wt’ and the ‘cluster’ variable site as the PSU.
Hint: information in setting up data for survey analyses is provided in
section 2.2.

e Use the svydes command to obtain information on the number of subjects
(observations) in each unit (i.e. each site).

Task 2

e Calculate a survey mean of follow-up blood pressure for males and females
(the relevant variable is called sex). How wide are the confidence intervals
around these point estimates?

Hint: the coding for survey means is described in section 2.3.

e Compare this results to the mean of the trial dataset you using the usual
summarize command.

Task 3

e Use lincom to test whether the difference between the mean follow-up blood
pressure values (bp_after) for males and females are statistically significant
at the 5% level.

Hint: an example of this has been provided in section 2.14. You can use the
value labels after the square brackets. Remember that Stata is case
sensitive.

Task 4

e Use svy: command to run a weighted logistic regression testing the potential
effect of weight and age group (agegrp) on whether the patient has low
blood pressure or not (low_bp). Also add the randomised treatment to the
model. Remember that age group and treatment are categorical variables.
Hint: the survey regression commands follow the same rules as the
regression commands in exercise 2. Section 2.9 provides more details.
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4 Appendices

4.1. Solutions to Exercises

Solutions to the exercises will be provided at the end of the course.

4.2. do file for the session

/* Stata: Statistical analysis and graphs */

/*set libraries for data*/

/*raw data folder*/

global raw "H:\StataLevel3\Raw data"

/*graph storage folder*/
global graphs "H:\StatalLevel3\Graphs"

/*******************************************************************************

** Section 1: Statistical analysis in Stata
*******************************************************************************/
/********************************************

**x*xxxx* Section 1.1: correlation

*********************************************/

/*open raw datafile*/

use "Sraw\bhps for class.dta", clear

/** listwise - Pearson correlation **/
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/*correlate varnamel varname2*/
correlate inc inv inc_lab

*could also split up the calculations by vehicle access:

bysort vehicle access: correlate inc inv inc lab

/** pairwise - Pearson correlation **/
count
count if tot hh inc == . | inc lab == . | inc inv == . | total mortgage ==

*correlate drops all cases with missing data among all variables

correlate tot hh inc inc lab inc_inv total mortgage

* pwcorr only ignores missing data between paired variables

pwcorr tot hh inc inc lab inc inv total mortgage

*pwcorr allows for additional options to be specified
*including the number of observations and the significance of each correlation

pwcorr tot hh inc inc lab inc_inv total mortgage, sig obs

*can also use stars as identifiers of statistical significance:

pwcorr tot hh inc inc lab inc_inv total mortgage, sig obs star(0.05)

/********************************************

**kkkkx*x Section 1.2: t-tests

*********************************************/

/** one sample t-test **/

* test mean of a variable against a known value*/

sum tot hh inc, detail

*compare the mean to the median
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ttest tot hh inc==30930

*the confidence level used in the test can be changed:

ttest tot hh inc==30930, level(99)

/** A paired t-test **/

ttest inc lab==tot hh inc

/** two-sample t-test (with by group) **/

/*to compare whether the difference in means between two bygroups

is statistically significant*/
ttest tot hh inc, by (garden)

*the ttest command assumes equal variances (similar SD) -

*the unequal option needs to be specified if this may not be the case

ttest tot hh inc, by(garden) unequal

/** oneway **/

* performs ANOVA

/* look at the means of total household income for the tenure types */
table tenure, c(mean tot_hh_inc)
/* test significance of the different tenure types ANOVA*/

oneway tot hh inc tenure

/** oneway with bonferroni option **/

*bonferroni reports adjusted (for multiple testing) significance
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oneway tot hh inc tenure, bonferroni

/********************************************

kxxxxx* Section 1.3: Chi-square

*********************************************/

*use tabulate for categorical variables:

tabulate tenure garden

*add chi-squared option:

tabulate tenure garden, chi?2

*use Fisher's exact test when some counts are 5 or less

tabulate tenure garden, exact

***EXERCISE 1 - page 12 in course notes

/********************************************

*xxxxx* Section 1.4: linear regression
*********************************************/

/*regress depvar indvar (s)*/

/*to have exp food as dependent and income and bedooms as independents*/

regress exp food tot hh inc rooms

/*to include dummies for binary/categorical independent variables*/

tab garden
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label list gdn

regress exp food i.garden

/*to change the reference group of a categorical independent variable*/

regress exp food b2.garden

/* interaction effects */

/* now run the regression with an interaction between the categorical

numeric tenure variable and interval total household income variable */

regress exp food i.garden tot hh inc i.garden#c.tot hh inc

*0ld coding:

xi: regress exp food i.garden*tot hh inc

/********************************************

FxkAkxxk Section 1.5: Logistic regression
*********************************************/
logistic garden hhsize

*error message: need to be coded appropriately!

label list gdn

/*recode garden to binary*/
recode garden (2=0 no) (1=1 yes) (.=.), gen(garden2)

order garden garden2
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/*to report odds ratios*/
order garden2 hhsize

logistic garden2 hhsize

/* categorical independent variables can again be included using i. */
label list hh type

logistic garden2 hhsize i.house type

/********************************************

*xxxxx* Section 1.6: Postestimation commands

*********************************************/

/** predict **/
* First run regression

regress exp_food tot hh inc rooms

* Find linear prediction

predict pred exp food, xb

order exp food pred exp food

/** test **/

regress exp_ food inc* rooms i.tenure

/* test 1f the coefficients equal zero and test their joint
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contribution to the model */

test 2.tenure 3.tenure 4.tenure 5.tenure

***EXERCISE 2 - page 28 in course notes

Ak kA hk kA hhkhkhhkhhk Ak hkrhhkrhhkhkhhkhhkhkhhkrkhhkrhhkhkhhkrhkhkhkhdrhkhkrhkhkhkhhkrhkhkhkhkdhkkxkhkxkkxx

* Section 2: Introduction to Stata graphics
kA hkhkhkhkhhhkhkhhhhhhkhhhhhdAhdhhhhdhhhkdhhhhdhhdhhdAhdhhdrhdhhkdhkrhkrhkrkrkrrkrxrkrxrkrxrkrxrxrxkxx*%
/********************************************

*xxxxx* Section 2.1: histogram

*********************************************/

use "Sraw\bhps for class.dta", clear

histogram rooms, frequency

histogram rooms, percent

/*1if you have a discrete variable that can take ONLY integer values*/

histogram rooms, discrete frequency

/* showing frequency of bins rather than density, with normal distribution

line plotted, with title, xtitle, ytitle and changing the colour of bins */

histogram rooms, discrete frequency ///
normal ///

title("Histogram of number of rooms") ///
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xtitle ("No. of bedrooms") ///
ytitle ("Frequency") ///
fcolor (red) lcolor (black)

/************k******k**************************

Kxxxxx* Section 2.2: bar graph

*********************************************/

*see which commands that draw graphs needs "graph" as a command

help graph

graph bar (mean) hhvalue, over (region)

graph bar (max) hhvalue, over (region)

/* bar graph with reduced label size & alternated labels,

title, subtitle, note and title on y-axis */

graph bar (mean) hhvalue, ///
over (region, label (labsize(*0.75) alternate)) ///
title ("Mean house value") ///
subtitle ("by region") ///
note ("Source: Stata Level 3") ///
ytitle ("Mean house price") ///

bar (1,color (green))

/* adding extra options to relabel bars on the x-axis, to add
the mean figure to the top of each bar, and adding y-lines

at intervals of 50,000 */

graph bar (mean) hhvalue, ///

over (region, relabel(l "London" 2 "South East" 3 "South West" 4 "Midlands" 5
"North West" 6 "North East") label (labsize(*0.75))) ///

title ("Mean house wvalue") ///
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subtitle ("by region") ///

note ("Source: Stata Level 3") ///
ytitle ("Mean house price") ///
blabel (bar) ///

bar (1,color (orange)) ///

yline (50000 (50000)300000)

/*plot more than one variable*/

graph bar (mean) hhvalue inc tot if house type <=3, ///

over (house type, relabel(l "detached" 2 "SEMI" 3 "End of terrace" )
label (labsize (*0.75))) ///

ylabel (, labsize(small)) ///

title ("Mean house value and labour income") ///
subtitle ("by house type") ///

note ("Source: Stata Level 3") ///

ytitle("s") ///

blabel (bar) ///

bar (1, color (orange)) ///

bar (2, color (pink)) ///

yline (50000 (50000)250000)

/* horizontal bar chart */

graph hbar (mean) hhvalue, ///
over (house_type) ///
title ("Mean house value by property type") ///
ytitle ("Mean House Value") ///

blabel (bar)

/********************************************

Fxxkxkx*k Section 2.3: line graph

*********************************************/

tab int month
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bysort int month: egen month count=count (int month)

twoway line month count int month, ///
title ("Number of cases in each month") ///
ytitle ("Number of cases") ///
xtitle ("Interview month") ///
xlabel (1/12) ///

scheme (s2mono)

*use the actual value labels instead of numbers 1 to 12
*reduce label size

*change line

twoway line month count int month, ///
lcolor (orange) ///
lwidth (thick) ///
lpattern (dash) ///
title ("Number of cases in each month") ///
ytitle ("Number of cases") ///
xtitle ("Interview month") ///

xlabel (1/12, valuelabel alternate labsize(*0.8))

/********************************************

kxrxxxx* Section 2.4: box & whisker plot

*********************************************/

graph box hhcost if (house type==1 | house type==2 | house_ type==4), ///

over (house type)

/********************************************

*Xxx%k%%% Section 2.5: pie chart

*********************************************/
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/* Number of cases per house types */

graph pie, over (house type) ///

title ("Number of cases of each house type in the dataset")

/* Number of cases by tenure, with title, slices showing percentages,

slice 3 exploded and in red, and tidy legend titles */

graph pie, over (tenure) ///
title ("Number of cases of each tenure type in the dataset") ///
plabel (1 percent) ///
plabel (2 percent) ///
plabel (3 percent) ///
pie (3, explode color(red)) ///

legend (label (1 "Owned") label (2 "Rented") label (3 "Rent free") label (4
"Shared") label (5 "Unspec"))

/********************************************

*xxxxx* Section 2.6: scatter plots

*********************************************/

/* scatter of monthly mortgage vs household value for three regions
separately - this is an example of multiple plots laid one on top

of the other */

twoway scatter monthly mortgage hhvalue

twoway scatter monthly mortgage hhvalue if region==1 & hhvalue < 2000000, ///
mcolor (blue) ///
title("Scatter of monthly mortgage against household value") //////
subtitle ("by region") ///
ytitle ("Last total monthly mortgage payment") ///

xtitle ("Value of household")
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twoway ///

(scatter monthly mortgage hhvalue if region==1 & hhvalue < 2000000,
mcolor (blue) msymbol (O)) ///

(scatter monthly mortgage hhvalue if region==2, mcolor (red) msymbol (X)) ///

(scatter monthly mortgage hhvalue if region==3, mcolor (green)
msymbol (diamond)), ///

title("Scatter of monthly mortgage against household value") ///
subtitle ("by region") ///

ytitle ("Last total monthly mortgage payment") ///

xtitle ("Value of household") ///

legend(label (1 "London") label (2 "South East") label (3 "South West"))

/*exploring goodness of fit*/

twoway ///
(scatter monthly mortgage hhvalue) ///

(1fit monthly mortgage hhvalue) if region==

twoway ///
(scatter monthly mortgage hhvalue) ///

(gfit monthly mortgage hhvalue) if region==

/********************************************

*xxxxx* Section 2.7: scatter matrix

*********************************************/

graph matrix hhvalue tot hh inc inc_lab monthly mortgage, ///

title ("Matrix graph of household value & income, labour income & monthly
mortgage") ///

scale(*0.7) ///

saving ($graphs\matrix scatter2, replace)

/**** opening and saving graphs ***/

graph use "$graphs\matrix scatter2.gph"
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*save a graph in a different format:
graph matrix hhvalue tot hh inc inc_ lab monthly mortgage, ///

title("Matrix graph of household value, household income, labour income and
monthly mortgage") ///

scale (*0.7)

graph export "S$graphs\matrix scatter.png",replace

***EXERCISE 3 - page 55 in course notes

Ak hkkhkhkhhhhhhhhhhhkhhhhhdhhdhhhdhhhhdhhhhdhhrhrhdhdhkrhkdhkrhkrhkrkrkrxrkrxrxrxrkrxrkrxrxrxkxxx*%
* Section 3: Analysing survey data in Stata

Ak hkkhkhkhhhhhhhhhhhhhhhhrhdhrhhdhhhdhhrhhdhhdhhdhhhhrhkdhkdhkrhrhkrrrxrkrxrkrxrkrxrkrxrxrxkxxx%x
/********************************************

*xxxxx* Section 3.1: setting up

*********************************************/

use "Sraw\bhps for class.dta", clear

/*set up the data for survey analysis*/

/*syntax is:

svyset PSU [pweight=weight variable], strata(strata variable if any) */

/* in this case the data has household weights and area as primary

unit, there is no strata variable */

svyset area [pweight=hh wt]

/* in this case the data has household weights and area as

primary sampling unit, there is no strata variable */
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/*here we do not set strata as we do not have them, but it is

better to set them if possible*/

/*describe whether/how the data is set up for survey analysis*/

svydes

/*to clear all survey settings*/

svyset,clear

/*set again*/

svyset area [pweight=hh wt]

/********************************************

*xxxxx* Section 3.2: survey means

*********************************************/

svy: mean tot hh inc

*different results

summ tot hh inc

/********************************************

***k*x**x* Section 3.3: survey proportions

*********************************************/
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/*first generate a new poorflag variable which is based on survey mean
of the data and is numeric: l=deprived, O=not deprived*/

gen deprived flag=0
replace deprived flag=1 if tot hh inc<(0.5 * 34291)

/*now calculate survey proportions ***/

svy: prop deprived flag

*different results

tab deprived flag

/********************************************

*xxxxx* Section 3.5: survey totals

*********************************************/

/* survey total of kids per region */

svy: total kids, over (region)

/* survey total of poor kids per region according to poor flag */

svy: total kids, over (deprived flag region)

/********************************************

*xxxxx* Section 3.7: survey tables

*********************************************/

/* one way survey table of household size */

86



Stata: Statistical analysis and graphs

svy: tabulate hhsize, count cell

/* with confidence intervals */

svy: tabulate hhsize, count ci

/* two way survey table */

svy: tab region garden, count cell row col

/********************************************

*xxxxx* Section 3.8: survey regression

*********************************************/

svy: logistic deprived flag inc lab rooms i.tenure

/********************************************

*xxxxx* Section 3.9: postestimation

*********************************************/

/* using lincom to test whether the difference between means

are statistically significant between london and the north east */

svy: mean tot hh inc, over(region)

*here need to spell out value labels!

lincom [tot hh inc]london - [tot hh inc]lnorth east
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***EXERCISE 4 - page 71 in course notes
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