

Stata:
Data access

& management

Data analysis: Data Access and Management using Stata

IT Services iii

Software Used

STATA 15

Files Used

bhps.dta

StataIntroduction.do

Revision Information

Version Date Author Changes made

1.0 July 2008 Adam Whitworth &
Kate Wilkinson

Created

1.5 Sept 2009 Neli Demireva Major Updates

2.1 March 2013 Neli Demireva Revised and Updated

2.2 July 2013 Ladislav Kozak Revised and Updated

3.4 October 2016 Ines Rombach Revised and Updated

4.0 February 2018 Bethan Copsey Revised and Updated

4.1 June 2018 Bethan Copsey Minor edits to exercises

4.2 January 2019 Bethan Copsey Minor edits to exercises

5.0 October 2019 Pradeep Virdee Minor edits throughout

Copyright

The copyright of this document lies with Oxford University IT Services.

Useful Information

ITLP Portfolio: http://portfolio.it.ox.ac.uk

Data analysis: Data Access and Management using Stata

IT Services iv

How to Use This Course Book

This handbook accompanies the taught session for the course. Each section
contains a brief overview of a topic for your reference and some sections are
followed by exercises.

The Exercises

Exercises are arranged as follows:

 A title and brief overview of the tasks to be carried out;

 A numbered set of tasks, together with a brief description of each;

 The lecturer and demonstrator will be at hand to help out with any
queries during the exercises. At the end of the course, solutions will
be provided.

Some exercises, particularly those within the same section, assume that you have
completed earlier exercises. Your lecturer will direct you to the location of files
that are needed for the exercises. If you have any problems with the text or the
exercises, please ask the lecturer or one of the demonstrators for help.

This book includes plenty of exercise activities – more than can usually be
completed during the hands-on sessions of the course as well as some tasks that
can be performed as a homework. These are clearly outlined throughout the
course book.

Writing Conventions

Certain conventions are used to help you to be clear about what you need to do in
each step of a task.

 Stata commands are presented with a small font on a new line
similarly to the official Stata syntax conventions.

 A button to be clicked will look l ike this .

Objectives

From this course book you should:

 Be able to open Stata .dta and .do files

 Be able to compile and execute .do files

 Be familiar with your data by describing and listing variables

 Be able to perform some basic manipulations of the data such as
keeping, deleting, generating and recoding variables

 Understand how to use univariate statistical computations such as
summarize and tabulate

Data analysis: Data Access and Management using Stata

IT Services v

Contents

How to Use This Course Book ... iv

1 Stata: Introduction ... 1

1.1. A few words about the Data that we are going to use today 2

1.2. Structure of the data ... 3

1.3. Opening Stata and understanding the Stata interface 4

1.4. What does our data look like in Stata? .. 5

1.5. An important thing to pay attention to: Interactive use vs. syntax
do-files .. 6

2 Common commands at the start of a do-file 8

2.1. Clear .. 8

2.2. Setting more off ... 8

2.3. The display command .. 8

2.4. Features of do-files: Saving a do-file .. 8

2.5. Annotating do-files with comments .. 8

2.6. Browse window must be closed ... 9

2.7. Opening do-files from folders .. 9

2.8. Delimit ... 9

2.9. Placing items from the Review window into a .do-file.................... 10

2.10. Data types ... 10

3 Opening and saving data ... 11

3.1. Opening data in Stata format .. 11

3.2. Using Windows Explorer to get folder and file paths correct 11

3.3. Opening data in comma/ tab delimited formats 12

3.4. Opening data saved in Excel format (e.g. xls/ xlsx files) 12

3.5. Saving data in Stata .. 13

3.6. Saving data to a new file in do-files .. 13

3.7. Saving over the same file in a do-file (use with caution) 14

3.8. Saving for previous versions of Stata ... 14

3.9. Saving to Excel format files .. 15

Exercise 1 Opening and saving data (15 minutes) 16

4 Getting your head around Stata syntax 18

4.1. General structure ... 18

4.2. If conditions ..19

Data analysis: Data Access and Management using Stata

IT Services vi

4.3. Getting a feel for the data – taking a first look at the variables:
describe ... 20

4.4. List .. 21

4.5. Codebook ... 22

4.6. Missing Values ... 23

Exercise 2 Getting a feel for the data (10 min) 24

5 Managing and manipulating the data – basic data
management commands ... 26

5.1. Drop variables .. 26

5.2. Drop observations .. 26

5.3. Keep variables .. 27

5.4. Keep observations .. 27

5.5. Preserve and Restore ... 27

5.6. Browse .. 27

5.7. Sort and gsort ... 27

5.8. Generate – creating a new variable ... 28

5.9. Replace ... 29

5.10. Label ... 30

5.11. Recode ... 30

5.12. Rename .. 31

Exercise 3 Basic data management commands (20 minutes) 32

6 Exploratory analyses – calculating sample statistics 34

6.1. Summarize (also summ or su) ... 34

6.2. Centile .. 35

6.3. Xtile .. 35

6.4. Tabulate – tables of frequencies and percentages 36

6.5. Tabstat .. 36

6.6. Table ... 37

6.7. Statsby .. 38

6.8. Drawing a scatterplot .. 39

Exercise 4 Summarize the data (20 minutes) 40

7 Appendices ... 42

7.1. Help in Stata ... 42

7.2. Additional Literature ... 42

7.3. Variables in the Dataset ... 43

Data analysis: Data Access and Management using Stata

IT Services vii

7.4. Answers to the exercises .. 43

7.5. Do-file for this session ... 44

Data analysis: Data Access and Management using Stata

IT Services 1

1 Stata: Introduction

Stata is a Data Analysis and Statistical Software Package for Professionals.

However, is Stata for me? Do I need it and would it be useful for me? One way of
thinking about these questions and trying to find an answer is by comparing Stata
to other similar statistical software packages.

How does Stata differ from similar software packages?

(Just some thoughts)

SPSS Stata
SAS

Advantages Advantages Advantages

Widespread use

Syntax is logical and fairly
intuitive.

Can handle very large
datasets (Stata or SPSS

will be fine for most
needs).

Cheap licenses from the
University.

Good for programming so ideal
for tricky or repetitive tasks.

Syntax and programming
style similar to previous
programming languages.

Click menus – simple to
learn and will do most

things.

Large range of statistical
analyses possible.

Cheap licenses from the
University.

Can paste menu-driven
commands to syntax files.

Very flexible – can write and
download programmes.

Simple to make and edit
graphs

Fast to run and less prone to
crashing.

Growing in popularity and in
supportive community that you

can consult:
http://www.stata.com/statalist/

Disadvantages Disadvantages Disadvantages

Syntax not terribly logical
– difficult to check it and

hard to write.

Still relatively expensive to buy.
Stata is sold in UK by

Timberlake Consultants and
students are able to buy a
cheaper GradPlan version.

Programming is not as
flexible.

Relatively slow to run and
tendency to crash. Not
great for programming;

not flexible.

Primarily syntax driven but can
be used through menus as with

SPSS.

For non-programmers,
syntax not as intuitive to

learn or to do certain
tasks.

http://www.stata.com/statalist/

Data analysis: Data Access and Management using Stata

IT Services 2

It is obvious that Stata’s advantages and full potential is realized with extensive and
continuous use (Stata is very good for programming and for handling large
datasets) and for first time users it may seem forbidding and esoteric. In reality, it
is much easier than you think and you should just give yourself time to adjust to its
ways of dealing with data.

Stata is available for Windows, Unix, and Mac computers. This tutorial in
particular uses the Windows version but most of the contents applies to the other
platforms as well. The standard Stata version is called Stata/IC (or Intercooled
Stata) and can handle up to 2,047 variables. There is a special edition called
Stata/SE that can handle a greater amount of variables up to 32,766 (and also
allows longer string variables and larger matrices), and a version for
multicore/multiprocessor computers called Stata/MP, which has the same limits
but is substantially faster. The number of observations is limited by your
computer's memory.

There are also various ways in which data in SPSS, SAS or Excel format can be
transformed into Stata format. Stata can easily use or export data in these formats.

1.1. A few words about the Data that we are going to use today

We are going to use data from the British Household Panel Survey. The
British Household Panel Survey (BHPS) is conducted by the ESRC UK Longitudinal
Studies Centre (ULSC), together with the Institute for Social and Economic Research
(ISER) at the University of Essex. The main objective of the BHPS is to further
understanding of social and economic change at the individual and household level
in Britain. Therefore, it contains a wide range of information. It was designed as an
annual survey of each adult member (aged 16 years and over) of a nationally
representative sample of more than 5,000 households, making a total of
approximately 10,000 individual interviews. The same individuals are re-
interviewed in successive waves and, if they leave their original households, all
adult members of their new households are also interviewed. Children are
interviewed once they reach the age of 16. Major topics in the first three waves of
the panel survey are household organisation, the labour market, income and
wealth, housing, health and socio-economic values. Further information about the
survey could be found at: http://www.data-archive.ac.uk/findingData/bhps.asp

http://www.iser.essex.ac.uk/ulsc/
http://www.iser.essex.ac.uk/ulsc/
http://www.iser.essex.ac.uk/
http://www.data-archive.ac.uk/findingData/bhps.asp

Data analysis: Data Access and Management using Stata

IT Services 3

1.2. Structure of the data

BHPS survey is a panel survey. Information for the respondents is collected at each
wave. Some variables such as gender have been recorded only once but most
variables will have values recorded for each of the waves. The data that we are going
to use today, however , includes only data from a single assessment time point.

 A wide format with repeated measurements looks like this:

Variable
Name

Personal
identifier

Age1

(at wave 1)

Age2

(at wave 2)

Age3

(at wave 3)

Age4

(at wave 4)

1 145087984 52 52 52 52

As you go along, you can learn various ways in which you can transform the data
from wide into long format and vice versa if you need to do so for your analyses.
This course will focus specifically on getting a feel of the data in Stata and introduce
you to the cleaning and manipulation of the dataset in Stata. A full list of the
variables in our practice dataset can be found at the end of this manual.

Data analysis: Data Access and Management using Stata

IT Services 4

1.3. Opening Stata and understanding the Stata interface

Command window –

used for typing

interactively commands

Menus for menu-

driven use
Opening and

saving data

(interactively)

Edit window

– you can

manually

edit the

data in here

(beware!)

Browse window

(Stata won’t run

when the

browse window

is open)

Results window

Variable

window –

l ists the

variables in

the dataset

Review window – l ists

past commands (click on

them to get into

command window)

Break key

– to stop

syntax

that is

running

Help

menu

Open

.do fi le

editor

window

Data analysis: Data Access and Management using Stata

IT Services 5

1.4. What does our data look like in Stata?

The time has come to open Stata. This can be done by going to the Start menu on

your computer. Then go to All Programs, find Stata and activate the program.

Let’s open a Stata file first (Stata data files’ extension is dta): click on the Open
icon the first one below the File icon and choose our practice dataset: bhps

household file. Files will be located on the H: drive (or another place as directed by
your teacher).

You can also choose to work with only a subset of variables (large datasets such as
the BHPS can have as many as 1000 of variables inside – remember information
for each variable is collected at several waves).

Data analysis: Data Access and Management using Stata

IT Services 6

1.5. An important thing to pay attention to: Interactive use vs.
syntax do-files

Stata can be used both interactively by typing commands into the command
window or by using the menus as we have done so far, or Stata can be used with
syntax do-files. There is (mostly) no difference between these ways of working
with Stata in terms of the commands that can be used or in terms of what those
commands do. There are, however, significant differences in terms of the user’s
ability to i) keep a record of exactly what they have done to the data, and ii) be able
to rerun whole projects making small changes to the syntax if required. Also, there
are some important commands which can only be used with syntax, such as loops
and programming.

There are two ways to use Stata interactively:

 commands are simply typed into the command window (at the bottom
of the picture above) and the user hits enter, or

 the user can use the drop-down menus.

Using Stata interactively runs the command and the data is changed. The
command goes into the review window (for the duration of the session it is possible
to see what has been done – it is also possible to right-click items in the review
window and send them to a .do file). This can be OK from time to time but this
approach has a serious disadvantages: Firstly, after the session closes there is
no record of what has been done to the data; secondly, it is not at all
easy to undo or redo something during the same session, moreover it
is impossible to do so once Stata has been closed. Hence, you would not be
able to show your supervisor, colleagues or funder what you have done to the data,
and if you realise you need to change something after you have run the commands
for the first time (which is virtually always the case) then this will be impossible to
do easily.

As a consequence, most academic and professional users write and save syntax
instead. All software programmes of this type can use syntax and in Stata this is
done using do-files. A do-file is recognised by Stata as a syntax do-file rather than
as a data file but a do-file is basically just a text editor like Word or Notepad.
Instead of using Stata interactively, a do-file is the document where all of the syntax
for a project is written. This is saved and kept so that there is a permanent record
of what was done and so that the syntax can easily be changed or amended as the
project develops, and this amended syntax file can then be used to rerun the whole
project again if needed. In terms of its importance, if you have your raw data files
then having a do-file – rather than having the final data – is the most important
thing because the do-file can be used to replicate the whole project just by running
it again. This goes against what many people intuitively feel which is that the data
which is created throughout is the most important thing. Our aim in writing do-
files is to create a single syntax file which we can run from start to finish in one go
in order to create all the data we need for a particular project without any manual,
interactive involvement. This complete do-file can then be passed to a colleague or
supervisor to check or use, or can be amended if needed and the whole project
rerun easily.

Data analysis: Data Access and Management using Stata

IT Services 7

To open a do-file go to ‘Window’ , click on ‘Do-fi le editor ’ and then ‘New do-

f i le ’ or alternatively click on the ‘Open new .do f i le ’ icon in the main results

window. A new do-file appears:

Open a new

do-fi le

Open a

saved do-fi le

Save the do-f i le (or use

‘File’ then ‘Save As’ to

save a new .do fi le)

Search for a

word in the do-

fi le

(Word is often

better for search,

f ind and replace

in syntax)

Do current-

fi le: click

to run the

highl ighted

syntax

Run current

syntax: click

to run

‘quietly’ the

whole do-fi le

or some text

Data analysis: Data Access and Management using Stata

IT Services 8

2 Common commands at the start of a do-file

It is common to see all or some of the following at the top of a syntax file:

2.1. Clear

The clear command is often used at the start of a do-file – this clears Stata of any
data that is open so that the session can begin afresh. If there is data open then you
will need to type clear before you can use your own data – remember to save any
data which is open first if necessary.

2.2. Setting more off

Another preference might be to type set more off in the command window and this
allows the results window to run without seeing the –more- message when the
results window becomes full. However, if you run a command that generates a lot
of output which you want to look at on the screen then you may not be able to see
all the output if you have typed set more off as it only allows you to scroll through a
limited section of the output window. The command set more on restores the –
more- message.

2.3. The display command

Stata can work as a calculator using the display command.

dipslay 2+2

NB. Stata commands are case-sensitive, display is not the same as Display and the
latter will not work. Commands can also be abbreviated; the documentation and
online help underlines the shortest acceptable abbreviation of each command and
we will do the same in this manual.

2.4. Features of do-files: Saving a do-file

The do-file is saved by clicking on ‘File’, ‘Save As’ in the do-file editor’s menus –
when using Stata interactively data is saved (and opened) from the main results
window. It is clearly important that you save your syntax so that you do not lose
any of your work. Note that you can only save .do files interactively in the .do-file
editor window.

2.5. Annotating do-files with comments

It is a good idea to get into the habit of adding notes of what the steps of the syntax
is doing. This is helpful when returning to the work after some time or for helping
others (colleagues, supervisors, etc.) to understand what the syntax is doing. Note
that /* and */ can be used to write notes in the syntax and Stata ignores everything
between the first /* and the closing */. It does not matter how many stars are placed
within these slashes. Alternatively, some people prefer to use just stars without
slashes (* notes *) to put annotations in and this works just the same. Some people

Data analysis: Data Access and Management using Stata

IT Services 9

add annotations for each section of syntax, others prefer to annotate every single
step of the syntax.

2.6. Browse window must be closed

In older versions (10 or earlier) Stata will not run (either interactively or a do-file)
if the browse window is open.

2.7. Opening do-files from folders

If you go through Windows Explorer or My Computer and open a do-file directly
from a folder then the Stata interface and the do-file editor will be opened at the
same time. However, it is more common to open Stata, open a new do-file by
clicking Window , then Do-File Editor , then New Do-File . You can then use

the open icon in the .do file editor window to open the do-file in the same way as
you would open a Word document. This enables you to have more than one do-file
open at the same time.

2.8. Delimit

Where lines of syntax are long the do-file can extend rightwards to cater for this,
but users sometimes prefer to see all of their syntax within the window without
having to scroll rightwards. Lines of syntax must always begin with a command
and so it is not possible to just hit enter to continue part of a line of syntax to the
next line. In order to break the line of syntax, one option is to use three forward
slashes /// at the end of the line of syntax and then it is possible to hit enter and
continue the line of syntax on to the line below in the do-file: Stata sees the /// and
understands this as a line break, and so understands the two (or more) lines as a
single line of syntax and does not produce an error message when the following
line does not begin with a command.

It is considered good practice to ensure that commands can be read easily within
the command window or when printed.

Alternatively, some users prefer to change the delimit (which is the keystroke
which identifies the end of a line of syntax). This is by default set to the enter key
but it is possible to change this to something else (typically ;). The advantage of this
is that Stata then looks for the ; as the end of the line of syntax, irrespective of
whether this ‘line’ of syntax is on one or more lines. Hence, by changing the delimit
to ; it is possible to hit enter to break up long lines of syntax and then to just include
a ; at the end of that syntax line. Programmers often also prefer ; as the delimit as
this is common in other software.

To change the delimit to ; (or any other key) the syntax is:

 #delimit ;

While this option is set, commands can run over several lines, and each command
needs to end with ‘;’.

Data analysis: Data Access and Management using Stata

IT Services 10

To change the delimit back to the default of the enter key type:

 #delimit cr

Note: this command can only be used in .do (and .ado) files.

Hence, if we had one particularly long line of syntax that we wanted to put on
multiple lines we could use /// or we could type:

#delimit ;

/* change the delimit from carriage return to ; */

Long line of syntax

Which spans multiple Lines in the

do-file and ends with the new delimit ;

/* the syntax ends with the new delimit to signal the end of

that line of syntax */

#delimit cr

/* change the delimit back to carriage return (or not if you

prefer ;) */

The ; delimit can be frustrating when wanting to run only sections of the do-file
because Stata returns to the default unless specified in the actual bit of the do-file
which is highlighted and run at that time. NB: Notice that the #delimit ; does
not produce any feedback messages apart from the error message if
you try to use it interactively in the command window. It only works
when you put it in a do file.

NB: Baum, C. (2009: 28) “Use #delimit ; sparingly (Stata is not C). To
deal with long lines, use ///and continue on the next line of your do file.
You can use the triple-slash continuation on any number of consecutive
lines of text.”

2.9. Placing items from the Review window into a .do-file

For users who use Stata interactively, it is possible to make a .do file containing the
contents of the Review window which is advisable for interactive users. To do this
simply right-click on the Review window and ‘Save Review Contents’ to a .do file.

2.10. Data types

In Stata, the major distinction is between numeric (black/blue in the Browser
window) and string variables, i.e. text (red). Different data management tasks often
involve conversions between numeric and string variables. For example, if you
import data from Excel (xls, xlsx or cvs format), it is likely that Stata has
transported it and considers it a string variable despite the fact that its contents are
numeric. String variables can hold up to 224 in length. Stata’s numeric data types
are byte, int, long, float and double. The byte, int, and long types can hold only
integer values. Float and double can hold very long numbers.

Data analysis: Data Access and Management using Stata

IT Services 11

3 Opening and saving data

3.1. Opening data in Stata format

Stata data files end in .dta (do-files end in .do) and to open them the syntax is:

 use filename.dta

For example, if we had a Stata data file called ‘bhps’ saved in thefollowing location
on the H: drive - H:\Data\Stata\Original then the syntax to open the file from this
folder path would be:

use "H:\Data\Stata\Original\bhps.dta"

This command alone will result in an error message if data are already open in
Stata and changes have been made (i.e. any syntax has been run) but these data
have not been saved. This is because opening the new data would cause the data
which is open to be lost, and Stata will give you an error message to warn you of
this. It is therefore common to see the clear option with the use command in syntax
files. The syntax would therefore be:

use "H:\Data\Stata\Original\bhps.dta" , clear

When using Stata interactively the ‘open f i le ’ icon in the main Stata window is

used to open a data file too and this is done in much the same way as you would
open a document in Word.

3.2. Using Windows Explorer to get folder and file paths correct

It can be time-consuming to write out complete file paths (as above) by hand and
there is a chance that small mistakes will be made when doing so which will lead
to difficulties in opening the data as any misspelled folder/file names will not be
recognized. A safer way to pick off folder paths and file names is to use Windows
Explorer. To do this right-click on the ‘Start ’ icon in the bottom left of the screen

and left click on ‘ ‘My Computer’ to open Windows Explorer. Browse through

the locations on the computer to find the folder that you wish to open the file from,
double-click it to get inside the folder (so you can see the files you want to open),
highlight the folder path from the bar across the top of the screen and then copy
and paste it into the .do file. Next, single left-click the file you wish to open so that
you are able to copy the filename, and then paste this filename onto the end of the
folder path – be sure to have a slash in the path before pasting in the file name onto
the end. Now you can surround it all by quotation marks, add the use command,
and the folder and file names should work correctly.

Also, if all files are opened from and saved to the same location, the “change
directory” command can be used. This directs Stata to the main folder, and requires
only the subfolders and/ or filenames to be entered when opening or saving files.

Data analysis: Data Access and Management using Stata

IT Services 12

cd “H:\Data\Stata\Original\”

use bhps.dta

3.3. Opening data in comma/ tab delimited formats

The insheet command can be used to open data from an Excel worksheet or any tab-
delimited text files. Despite its name insheet does not read binary spreadsheets (file
types .xls). Both tab and comma options are available. In order to do so your data
file must be set up in a certain way:

 the first row contains the variable names and the data start on the
second row;

 missing numeric data should be coded as an empty cell;

when some spreadsheets create a .csv file they do not add commas to the end of a
line if the cells at the end of that line are empty. This will confuse Stata which relies
on the commas to tell where the values are. You can avoid this problem by adding
columns of 1’s (or any other character) to the end of each row of data. This variable
can be dropped once the data is in Stata;

the file must be specifically saved as a ‘comma separated values’ (.csv) file in Excel.
This can be done by clicking ‘File’ , ‘Save As’ , then choosing ‘comma separated

values’.

Once the file has been saved as a .csv file then the syntax to open this file in Stata
is:

insheet using filename.csv

For example:

insheet using "H:\Data\Excel\Original\excel_names.csv", clear

It is most important to check whether the command has produced the desired file.
Check for example, if the number of observations that was in the text file is the
same as in the new file, using the summarize command.

 Another possibility is to use the infile command. An important
distinction exists between insheet and infile. With infile, you could use
the if expression and in range qualifier to selectively input data. For
example, you could use in 1/1000 to read only the first 1000
observations.

The structure of the command is:

infile varname1 varname2 varname3 using filename.csv

3.4. Opening data saved in Excel format (e.g. xls/ xlsx files)

Newer versions of Stata allow for data to be read in from Excel (.xls or .xlsx. formats).
In the command below, ‘firstrow” indicates that the first row in the dataset consists of

Data analysis: Data Access and Management using Stata

IT Services 13

the variable names, rather than variable values. If no variable names are saved in the
first row of the excel file, then the firstrow option is not used.

More information can be accessed typing the command “help import excel”

import excel using “H:\Data\Excel\Original\data.xls", ///

clear firstrow

However, the formatting and coding that can be obtained when importing files in
Stata format is lost when importing data in Excel format.

3.5. Saving data in Stata

As in programmes such as Word, there are two ways to save data:

 it is possible in Stata either to open a dataset, make changes to it and
then save over the same file. When using Stata interactively, this is
done by clicking the save icon on the menu bar, or

 it is possible to open a dataset, make changes to it, and save it to a new
dataset - this leaves to initial dataset opened unchanged. When using
Stata interactively, this is done the same way as it would be done in
Word: click ‘File’ , ‘Save As’ , specify a location and new filename,

and save with the .dta ending (Stata data files end .dta).

However, it is much better practice to use Stata commands to save data sets. These can
be saved in .do files to ensure that a record exists of all the changes made to the data,
and the datasets saved. Commands for saving data in Stata and excel format are shown
below.

3.6. Saving data to a new file in do-files

To save a data file in a do-file the following syntax is used:

save filename.dta

For example, if we want to save a file to the Data\Stata\Modified folder on the H:
drive we would type:

save “H:\Data\Stata\Modified\work file.dta”

By specifying the file path and new file name as we have done here, a new file is
saved with whatever changes have been made to the dataset since we opened it.
Importantly, by saving the dataset to a new filename, the initial dataset which we
opened remains unchanged. This is what is often done with raw data files for
example, which are usually never changed or overwritten to enable us to go back
to the original data if needed. Saving with a new file path or filename in a do-file is
equivalent to ‘File’ , ‘Save As’ , specifying location and new filename if using

Stata interactively (i.e. bullet two above).

Data analysis: Data Access and Management using Stata

IT Services 14

This syntax works if a dataset of that name does not already exist in the specified
folder. However, if a dataset with this name does exist in this folder then Stata will
not let us write over it using this syntax. Instead, it will give us an error message
telling us that a file of this name already exists in this location and asking us if we
are sure that we wish to copy over it with this new data. To make Stata write over
the file you simply add the replace option. For example, if we wanted to run the
syntax for a second time (i.e. the file already exists) and replace the existing file (we
might for instance have improved the syntax since the last time we ran it) then we
would write:

save “H:\Data\Stata\Modified\saved data.dta”, replace

The replace option overwrites any previous version of the file which exists in this
folder and so is commonly used by users who write syntax files and often run their
syntax multiple times as they gradually make changes to it. Therefore, only use the
replace option when you are sure that it is OK to write over the existing file because
once replaced there is no way to retrieve the original file. It is usually fine in a
syntax do-file to use the replace option because it will replace files with the most
recent (and presumably most correct) versions as the syntax is improved over time.

However, it is good practice to ! never overwrite any original raw data files

at all in case they are needed for some reason in the future.

3.7. Saving over the same file in a do-file (use with caution)

Alternatively, if a data file were open at the time, we had made changes to it and
did actually just want to write over the version of the file we opened with the
changed version we would not need to specify the file path and could just type:

save, replace

This overwrites the data file that is used at the time this command is run. The
previous version of the file (i.e. the one that we opened) is changed permanently.
It is advisable to use save, replace very cautiously: it is not good practice to make
any changes to any raw datasets, and using save, replace can often cause problems
if running the syntax several times (e.g. if generating new variables and afterwards
using save, replace can cause problems. This is because, if the .do file is run again,
there will be an error message when you come to generate a variable again because
it already exists in the dataset). It is usually a good idea to save to a new work file
rather than use ‘save, replace’.

3.8. Saving for previous versions of Stata

If you are working on a later version of Stata and use the save command then you
will not be able to open that data file in earlier versions of Stata: this can cause a
few problems if for example one person in your research team has a copy of Stata
13 but everyone else uses Stata 12. The same also applies with earlier versions.

Data analysis: Data Access and Management using Stata

IT Services 15

A useful command to avoid this problem is ‘saveold’. This command is used in
exactly the same way as the save command outlined above except that it will allow
files saved in Stata 13 to be opened with versions 12, 11 etc.

3.9. Saving to Excel format files

If you wish to save your data in excel format (.xls. or .xlsx), then the following
command can be used:

export excel using "H:\Data\Excel\Modified\bhps1.xls", ///

 replace firstrow(varlabels)

In this command, the first row in the excel spreadsheet will consist of the variable
labels (rather than variable names) that were used in the Stata dataset.

However, you will use any value labels you may have applied to the data.

If you wish to save your data in csv format (which Excel can open) then you should
use the outsheet command. The comma option can be specified to save a comma
delimited file (and replace can also optionally be used):

outsheet using “H:\Data\Excel\Modified\saved data.csv”, ///

comma replace

For those who also have StatTransfer installed then the stcmd command may be
useful. This essentially allows you to carry out the step of transferring data between
formats from within Stata. To download this .ado programme and its
accompanying help file type findit stcmd in the command window.

Data analysis: Data Access and Management using Stata

IT Services 16

Exercise 1 Opening and saving data (15 minutes)

 Practice opening and saving data in different formats using a .do file

Task 1

 Open a new do file.
Note: In these exercises, you need to write your own code. Write all of
your commands for the following tasks in this do file.

 Open the Stata dataset with the name bhps.dta, which is saved in
H:/Data/Stata/Original using the use command in Stata.

Hint: the Stata code to open data in Stata format is described in section
3.1

 Take a minute to look at the data in the Data Editor window, and have a
look around the results window. How many observations and variables
are in the dataset?

 Save the dataset in H:/Data/Stata/Modified using the save command in
Stata. Name the newly created dataset bhps_save.dta.

Hint: Ensure that the file path and name for the new dataset are correctly
specified to avoid overwriting the original dataset.
The Stata code to save data in Stata format is described in section 3.6

Task 2

 Open the Excel dataset with the name excel_names.xls, which is saved in
H:/Data/Excel/Original using the import excel command in Stata.
Be aware that in this dataset, the variable names are given in the first
row of the excel spreadsheet.

Hint: the Stata code to open data in Excel format is described in section
3.4

 Take a minute to look at the data in the Data Editor window, and have a
look around the results window. Does the data appear to be different
from that read in during task 1?

 Save the dataset in H:/Data/Excel/Modified using the export excel
command in Stata. Name the newly created dataset
excel_names_save.xlsx .

Hint: the Stata code to save data in Excel format is described in section
3.9

Task 3

 Also open the dataset named excel_nonames.xls, saved in
H:/Data/Excel/Original.

Hint: Be aware that this dataset contains no variable names in the first
row. How do you have to change the code?

Data analysis: Data Access and Management using Stata

IT Services 17

Task 4

 Save the Stata .do file in H:/StataProgs. Name the .do file StataCourse1.
Hint: this task has to be performed manually; there is no command for
this.

Data analysis: Data Access and Management using Stata

IT Services 18

4 Getting your head around Stata syntax

4.1. General structure

The general structure of syntax in Stata is:

command variable(s) [if] [in], options

Commands always start on a new line and lines of syntax have to start with the
command. One command should not run to the next line (although see ‘delimit’ in
section 2.8). Stata does not mind whether there is more than one space between
words where this does not affect the meaning of the syntax (there must be at least
one space between words though). Stata is case-sensitive and lower case should
always be used for commands.

For example, say we wanted to make a binary variable ‘int2005’ to identify if the
respondent in our dataset was interviewed in 2005 where ‘int2005’ takes the value
1 if the interview was in 2005 and the value 0 if it was not in 2005 (it was in 2006
for example). A Variable ‘int_year’ which identifies the year in which the interview
took place already exists in our dataset. So what we want to do is to create a variable
int2005 with values equal 0 and then to tell Stata to change the value to 1 if the
value for int_year is 2005. To do this we could write:

generate int2005 = 0

replace int2005=1 if int_year==2005

In this syntax it can be seen that the commands (generate and replace) start the
line, next comes the variable followed by the values to apply to it, and finally come
any if conditions. Note that the if condition takes a double equal sign in Stata
(see p.24 for other mathematical operators to use with if conditions). In this
example what we firstly generate a variable called ‘int2005’ and set it to 0 for all
observations. Next we replace ‘int2005’ to 1 in cases where the interview took place
in 2005 (i.e. int_year==2005). Note that once the variable is generated we
cannot generate it again (unless we first drop it) and we instead replace
values of this existing variable.

Let’s assume that we want to drop the following two variables from the dataset
now:

drop int_day rooms

Again the structure of the syntax line is that the command comes first (i.e. drop)
followed by the variables we wish to drop from the dataset.

rename is the command to rename variables. How would we rename the
house_type variable so that it was instead called type_of_housing? Stata syntax is
fairly logical so it might not be a surprise to learn that to do this you would type:

Data analysis: Data Access and Management using Stata

IT Services 19

rename house_type type_of_housing

If we wanted summary statistics of an interval level variable (for instance car_value)
then we could use the summarize command to give the mean, minimum,
maximum, and some other summary statistics:

summarize car_value

Finally, many commands in Stata have options which can be specified by typing a
comma and then the desired options. summarize is one such command where the
detail option can be added to the command to gain additional summary statistics
(e.g. percentiles, median, etc). The syntax would be:

summarize car_value, detail

4.2. If conditions

Many commands can be carried out with ‘if’ conditions and this means that the
command will only be carried out for observations (rows) which satisfy the ‘if’
condition.

The mathematical operators used in Stata are similar to many other programmes,
with the exception of ‘equal to’ which is a double equal sign when used as part of
an if condition:

== !=

or

~=

> < >= <= & |

Equal
to (2 =
signs)

Not
equal

to

Greater
than

Less
than

Greater
than or
equal

to

Less
than or
equal

to

And Or

Remember: a missing numeric value (.) is always considered higher than all other
numeric values. So, if you are recoding a numeric age variable (age) into a
categorical age variable (age_old) then be very careful about writing:

gen age_old=0

replace age_old=1 if age>70

The latter command will basically replace all missing values with the value of 1.

Instead you should write

replace age_old=1 if age>70 & age!=.

Data analysis: Data Access and Management using Stata

IT Services 20

This last sentence can be written as:

replace age_old=1 if age>70 & !missing(age)

4.3. Getting a feel for the data – taking a first look at the
variables: describe

Once the data is open it is likely you will want to have a look at the variables, their
coding and their data values to become more familiar with the data. One way to do
this is through the browse window, within which you can sort variables and use the
scroll bar on the right to see the largest and smallest values for the sorted variable.
Missing numeric values are coded as . in Stata and are treated as the highest
numeric value – higher than all non-missing numbers. If you have missing data
you would be advised to code it as . too because Stata expects this and some of its
commands are set up to recognise . as missing and to treat it accordingly. This
means that you probably have to do some recoding of your variables as in survey
data, values such as ‘No answer’ may be coded as ‘-8’ and ‘Does not apply’ as ‘-9’
and you would normally want to recode them into . when you are analysing the
data.

Data formats in the browse window

In the browse window:

cells shown in black are the numeric values of numeric variables;

cells shown in blue are the value labels of numeric variables – whilst these may
show words in the cell, the bar at the top of the browse window shows that these
are numeric variables;

cells shown in red are string variables. The country variable is a string variable for
example, despite looking numeric.

Black

Blue

Data analysis: Data Access and Management using Stata

IT Services 21

To change how variables are display in the browse window right-click the variable
and then click ‘Show/Hide All Value Labels’ . Alternatively it is possible to go

through the ‘Prefs’ tab in the main results window and to change the General

Preferences.

To check a variable double-click it in the browse window to open the ‘Variable

Propert ies’ dialog box. In the format box a ‘g’ denotes a numeric variable and an

‘s’ denotes a string variable.

As well as the browse window some other commands are also useful to get a feel
for the data. ‘Describe’ is useful when you are less familiar with variables as it
describes the variable(s) and also tells you if the variable has a value label attached
to it (and if so what it is called). To describe all of the variables in a dataset the
syntax would be:

describe _all

and to describe the tenure variable the syntax would be:

describe tenure

4.4. List

You can also develop a better understanding of the missing data by listing the
missing values (for one variable or combination of variables):

list tenure if tenure==.

Another useful way that you can run commands on multiple variables is to use the
* key. This is best explained with examples. If we typed

describe car*

then we would be asking Stata to describe all variables which start with ‘car’
irrespective of what they have after this. * can be used at the end of the variable
name (as here), at the start, or indeed in the middle of the variable name. This
works with many commands so, similarly, if we wanted to drop all variables ending
in ‘temp’ we could simply type:

drop *temp

Data analysis: Data Access and Management using Stata

IT Services 22

As well as describing the variables, the ‘describe’ command also sets out whether
each variable has a set of value labels attached to it and, if so, what those value
labels are called. These value labels refer to the values (i.e. categories) which that
variable can take – if you generate your own variables you may want to create labels
both for the variable and for the values of the variable as well. Looking at the
variable for housing type (house_type) the value label is listed as hh_type. In order
to see the values of this label type:

label list hh_type

You might want to look at what values the first ten (or some other value)
observations in the data have for some variable. For example, if you wanted to see
the first ten values of household type (house_type) in the data the syntax would be
as below.

/*list the first ten values of house_type in the dataset*/

list house_type in 1/10

Note that this tells you the values for the first ten observations in the data, and
therefore re-sorting the data in a different way will result in different observations
coming to the top of the dataset.

Say we were interested in a particular housing type - for instance terraced housing
– and we wanted to know how many people in the dataset lived in terraced housing.
First we could use the ‘label list’ command shown above to find out that
terraced housing is coded 4 in the house_type variable. Then the syntax to count the
number of instances of terraced house in the data using the count command would
simply be:

/*how many observations have house_type of value 4 (ie terraced

house)*/

count if house_type==4

This could also be done using other commands that we will come to later.

4.5. Codebook

Codebook is extremely useful command to obtain information on a variables, i.e.
the format type, information on the label, the number of category labels etc. You
can use it with a particular variable such as house_type.

codebook house_type

Data analysis: Data Access and Management using Stata

IT Services 23

You can also use codebook to have a look at the different categories of a variable
and the numerical values associated with them. This is particularly useful when a
variable has a lot of categories and this information can be very important for
subsequent coding.

codebook house_type

4.6. Missing Values

Stata has a variety of missing value codes: from system missing . to .a and .z. They
are treated as large positive values, and when your dataset is sorted, they would
come at the bottom of the dataset. Therefore if you use an expression if variable <.
you would definitely exclude the missing values of that variable from the analysis.

Stata’s standard approach of handling missing data is to exclude any missing
observations from the computation. For the generate and replace commands,
any missingness is preserved in the newly created variable. In univariate statistical
commands, such as summarize, only non-missing cases are included. For
multivariate statistical commands, Stata practices listwise deletion, in which each
observation for which there is missingness on any of the variables included is
deleted. The same applies to correlate command, although the pwcorr
command computes pairwise correlations using all the available data for each pair
of variables.

Several Stata commands, however, deal with missing data in a nonstandard way.
The egen rowwise functions (rowmx, rowmean, rowtotal) all ignore missing values.

The empty or null string “” is also treated as a missing value.

You can use the ‘mvdecode’ command to recode various numeric values, such as -
9, -8, -999 to missing. The ‘mvencode’ performs the opposite function. For more
information, see the Help file.

Data analysis: Data Access and Management using Stata

IT Services 24

Exercise 2 Getting a feel for the data (10 min)

 Read the bhps file in again to ensure you are using the original .dta data

 Describe and get a feel for the data

Task 1

 Read in the bhps file from H:/Data/Stata/Original, as in exercise 1.

 To get an initial idea of the main variables considered in this exercise,
list the first 20 observations of the following variables:
hhid, tenure, inc_lab, country and int_month
Hint: information on the list command is provided in section 4.4

 From this output, how many of these households rent their
accommodation?

 From this output, which household has declared a labour income of
zero?

Task 2

 Run the describe command to look at all variable descriptions and the
names of the value labels for all variables in the dataset.

Hint: the Stata code for this command described in section 4.3.

 Specifically look at the following variables: tenure, inc_lab and
country.
Of these three variables, which one is in string format: tenure,
inc_lab or country?
What is the value label for tenure?
What is the variable label for inc_lab?

Hint: run the describe command again, but this time only for the
above named variables.

Data analysis: Data Access and Management using Stata

IT Services 25

Task 3

 What values can the interview month variable (int_month) take and
what do they mean? Find the answer using two different methods:

- 1. Use the codebook command

- 2. Use the describe command to find the value label for the
int_month variable and then the label list command to list the
value labels.

Hint: the Stata code for the codebook command described in section
4.5.
The label list command is described in section 4.4.

 Compare the answers obtained when using methods 1 and 2. Are
there any differences in the information displayed?

Data analysis: Data Access and Management using Stata

IT Services 26

5 Managing and manipulating the data – basic
data management commands

Drop and keep are fairly self-explanatory commands which can be used for variables
or for observations – drop removes the specified variables or observations whilst
keep retains only the specified variables or observations.

5.1. Drop variables

Drop can be used to drop particular named variables such as kids and emp in the
first example below

 drop kids emp

or like many other commands drop can also be made to act on a number of
variables at the same time. In the example below we drop all variables from
exp_food to car_value in the dataset as well as all variables beginning with toi (i.e.
the two variables relating to access to toilet).

 drop exp_food-car_value toi*

5.2. Drop observations

Drop can act on observations as well as variables. Say we were only interested in
cases with particular values on the housing type variable (house_type) and we
wanted to drop all observations with values other than these. First we could
describe the variable to find out about its value label (its value label is called
hh_type), and then list the value labels attached to the house_type variable:

 describe house_type /*shows the value label is hh_type*/

 label list hh_type /*show the coding of the variable */

Seeing the codes, we decide that we want to drop all cases that relate to business
premises, sheltered accommodation, institutional housing, those labelled as
‘other’, and those missing information for this variable (i.e. those coded 9, 13, 14
and 15; remember that missing data is coded . – which Stata takes to be a very large
number).

This is done with the syntax below - note the use of double equal signs after the if
condition and the three forward slashes to break onto a new line in the .do file (this
is not necessary as the .do file can keep going across but some users prefer to be
able to see all of their syntax in the do-file window and so may wish to break lines
– ass discussed in section 2.8):

drop if house_type > 999 | house_type==9 | ///

 (house_type>=13 & house_type <=15)

Data analysis: Data Access and Management using Stata

IT Services 27

5.3. Keep variables

Keep does the opposite of the drop command. It will keep certain variables and
drop all others:

 keep hhid-garden inc* hh_wt-int_dur

5.4. Keep observations

Keep can also be used to keep only specified observations. Here we keep only those
cases where the interview year is 2005 or 2006 – brackets may be needed for more
complex if statements:

 keep if int_year == 2005 | int_year == 2006

5.5. Preserve and Restore

There may be occasions when you wish to work on a subset of the data temporarily;
maybe you have to consider a subgroup for only a single aspect of your analysis.

You can preserve your data before doing any manipulations to it through keep and drop.

Simply type:

preserve

After you finish working with a subset of the data and want to come back to the original
data, type:

restore

Be aware that you have to run the preserve and restore commands from the .do file
at the same time. If run separately, Stata will be unable to restore your data.

5.6. Browse

The ‘browse’ command is used when you want to open the browse window but want
to only see selected variables. This can be helpful if you have lots of variables in the
data and want to compare a few of them visually. Note that all of the variables in
the underlying data remain intact even though you only see those selected in the
browse window. To only see house value and house type for example we would
type:

 browse hhvalue house_type

5.7. Sort and gsort

If you want to look at the data and sort it then often this can be done interactively
by clicking into the browse window, selecting the variable of interest and clicking
sort.

Data analysis: Data Access and Management using Stata

IT Services 28

However, if you should need to do a sort in your syntax (e.g. for a merge) then the
sort command will do this:

sort hhvalue

Here for instance we sort by house value (hhvalue). Sort always does an ascending
sort so this means that missing values – which are usually . – end up at
the bottom of the data file as they take the highest numeric values in Stata.

You can add a second variable (e.g. sort int_year hhvalue), which will show the value
of the houses in ascending order first for the earlier interviews, then for those
conducted later.

gsort –hhvalue

Here for instance we do a descending sort on house value; the negative sign dictates
the direction of the sort. The command gsort +hhvalue is also perfectly valid

and means just the same as sort hhvalue.

It is also possible to sort by more than one variable at a time (nested sorts). Using
the sort command with multiple variables sorts all the variables in ascending

order. e.g. sort int_year hhvalue, will show the value of the houses in
ascending order first for the earlier interviews, then for those conducted later.

When using gsort the variables can be sorted in either direction and need not all be
sorted in the same direction. For example, to sort the data by month (ascending)
and house value (descending) we type:

gsort +int_month -hhvalue

5.8. Generate – creating a new variable

The generate command is used to create a new variable. For example, to create
a variable called count and to set it equal to 1 for every observation the syntax would
be:

generate count=1

Generate can be abbreviated to gen (or even to g). So, to generate a new variable
called int_year2 and set it equal to the value of an existing variable int_year we
would type:

gen int_year2=int_year

Data analysis: Data Access and Management using Stata

IT Services 29

Variables can either be string or numeric. The examples above create numeric
variables, and it is usually easier to work with numeric variables where possible.
To make a string variable use quotation marks:

gen job = “statistician”

Mathematical equations can also be used to generate new variables. For example,
you may have variables describing the height and weight of a participants, which
you can use to generate a new variable BMI.

5.9. Replace

Replace overwrites the values of variables which already exist. In the following
example, therefore, we make a new variable called int_season (interview season)
and set it equal to missing (.) for every observation. Next we use the replace
command to replace values of int_season with new codes based upon the month in
which the interview took place (int_month) – (i.e. Jan, Feb and March take the code
1 in int_season etc).

gen int_season=.

replace int_season=1 if int_month==1 | int_month==2 | int_month==3

replace int_season=2 if int_month==4 | int_month==5 | int_month==6

replace int_season=3 if int_month==7 | int_month==8 | int_month==9

replace int_season=4 if int_month==10 | int_month==11 | int_month==12

Note that generate (like other commands) requires only a single equal

sign whilst ‘if’ conditions (unlike commands) take a double equal sign.
Given that replace overwrites values you should be careful when using this
command on existing variables – it is usually safer to use generate and then

replace (as above), or recode, rather than overwriting existing variables (we will
come to recode in a moment). Once a variable exists it is not possible to

generate another variable with the same name and to make changes to this
variable the replace command should be used, or you can drop the variable and

generate it again.

Alternatively, to generate a new string variable called deprivation, set it equal to
blank in all cases, then reset it with the word “lowincome” if the individual has low
income (<10000) and “above10000” if the person does not have low income
(>=10000 and not missing) you would type:

gen deprived = “”

replace deprived = “low income” if inc_lab < 10000

replace deprived = “above 10000” if inc_lab >= 10000 & inc_lab !=.

Always be careful with creating string variables – you will most
certainly have to recode them at a later stage; that is why it is more
useful to create numeric variables.

Data analysis: Data Access and Management using Stata

IT Services 30

5.10. Label

The label command is used, firstly, to label variables and, secondly, to attach value
labels to variables: labelling variables appropriately is helpful for future reference
to remind yourself of what the variable actually is, whilst labelling values is pretty
much essential. For example, we can label the int_season variable that we have
created above as follows (this is called attaching a variable label):

label variable int_season "season of interview"

Above, we created four possible values for this variable using the replace command
(1=jan, feb, mar; 2=apr, may, jun; 3=jul, aug, sep; 4=oct, nov, dec). We can now
label these four codes as spring, summer, autumn and winter. Attaching labels to
variable values has two steps.

Step one is to define the labels and the syntax for this is label define

labelname value1 label1 value2 label2…… In this example therefore
the syntax to define the label called seasons is:

Step 1 label define seasons 1 spring 2 summer 3 autumn 4 winter

If you want the label values to be more than one word then put quotation marks
around them when defining the label (e.g. label define seasons 1 “season

of spring”…)

Having defined the seasons label, step two is to attach this label set to the variable
int_season. The syntax to do this is: ‘label values variable_name

label_name’. In this example therefore the syntax to attach the seasons label to
the int_season variable would be:

Step 2 label values int_season seasons

NB. The label exist independently of the variable and it is therefore
possible to attach this label set to several variables if needed.

5.11. Recode

‘Recode’ is another commonly used command and is used to change the values

(and, if you wish, value labels) of variables. ‘Recode’ is designed for recoding
numeric variables and if you wish to recode a string variable you should use
‘generate’ and ‘replace’ as in the example above. It is possible to recode a
variable into itself (i.e. to replace a variable with a new version of itself) or to recode
a variable into a new variable which is made in the process – it is often safer to
recode into a new variable and to keep the original version of the variable. To
recode into a new variable the generate option is included; if this is not
included then the original variable is overwritten.

Data analysis: Data Access and Management using Stata

IT Services 31

The ’recode’ command in Stata also enables you to add value labels to the groups
created at the same time. Therefore, it would be simpler to use recode to do what
we have just done above (i.e. generate, replace, define value label, attach value label):

 drop int_season

recode int_month (1 2 3=1 spring) (4/6=2 summer) ///

(7/9=3 autumn) (10/12=4 winter) (.=.), generate(int_season)

Note here that the ‘gen’ option at the end is where we specify that we want to recode
into a new variable (int_season) rather than recoding int_month with a condensed
version of itself – in this way the original int_month variable is not altered. The
contents of the first bracket instructs Stata to take all codes of 1 (jan), 2 (feb) and 3
(march) in the original variable (int_month) and set them all equal to value 1 in the
new variable, and label this value of 1 as spring. Note that 4/6 means 4 to 6 inclusive
(i.e. 4, 5 & 6). Missing values remain coded as missing values in the new variable
in the syntax above – note that it is not possible to label missing values using
recode. Note that the categories in the recode statement evaluate sequentially.
Other possible options instead of . are ‘-9’ (relating to non-missing values, usually
the missing values are transferred to missing automatically). In previous versions
of Stata, ‘miss’ and ‘nonmiss’, ‘else’ (meaning all other values which have not yet
been coded for) – it is not possible to use more than one of these three and if one
is used then it is the last category specified before the options (as above). Again, it
is also possible to recode multiple variables with the same coding structure at the
same time. See the Help menu for more detail.

5.12. Rename

Now that we have created this new variable we might decide that we would rather
name it differently. Unsurprisingly, the rename command is used to rename
variables. To change the name of the int_season variable to season_of_interview
therefore we would type:

 rename int_season season_of_interview

After being renamed, a variable retains all of its properties, such as format, variable
label, value labels etc.

Data analysis: Data Access and Management using Stata

IT Services 32

Exercise 3 Basic data management commands (20 minutes)

 Read the bhps file in again to ensure you are using the original data

 Practice dropping/ keeping variables and observations

 Generate new variables, apply value and variable labels

Task 1

 Delete (“drop”) all variables beginning with ‘toi’.

Hint: the Stata code for this command described in section 5.1.

Task 2

 Sort the dataset so that the household with the lowest labour income
(inc_lab) is at the top of the dataset.
Check the data editor to verify the command worked.
Hint: the relevant Stata code is described in section 5.7

 Now sort the data by year of the interview and the household ID

Task 3

 Assume that in your analysis, you are only interested in cases where
the house_type is terraced, end terraced, semi-detached or detached.
Only keep data for these types of houses.

Hint: use the label list command to find out about value labels in the
house_type variable. Remember that house_type is the variable
name; hh_type is its label.

Hint: the Stata code to drop/ keep observations is described in sections
5.2 and 5.4. You will have to use an if-statement.

Task 4

 Create a binary variable (i.e. a variable that takes the values 0 or 1)
called ‘data2005’ and make it equal to 1 for cases where the interview
took place in 2005 and equal to 0 otherwise.
Hint: the variable with information on the year of the interview is called
int_year. The code to create and replace new variables is described in
sections 5.8 and 5.9.

 Create a value label called year_2005, with the categories 1= “Yes
(2005)” and 0 = “No (2006)”
Hint: the Stata code to create a new value label is described in section
5.10.

 Then apply the new value label to the variable data2005, which you
have just created.
Hint: the relevant Stata code is described in section 5.10

 Finally, apply the following variable label to the newly created variable
(data2005) : “Has the interview been performed in 2005?”
Hint: the relevant Stata code is also described in section 5.10.

Data analysis: Data Access and Management using Stata

IT Services 33

Task 5

 Sometimes, the recode command may be easier to use if new variables
are created to include categories based on another variable.

 Therefore, use the recode command to create a new variable called
’data2006’. Base the new variable on the variable int_year and make
it equal to 1 for cases where the interview took place in 2006 and equal
to 0 if the interview took place in 2005. Make sure that values 1 are
labelled “Year 2006” and values 0 are labelled “Year 2005”.
Hint: details of the recode command are provided in section 5.11.

 Your supervisor is not happy with the variable name. Change it from
‘data2006’ to ‘Interview06’
Hint: information on the rename command is provided in section 5.12

Task 6

 For each household, calculate the percentage of the total income that
is derived from the labour income and name this variable lab_percent.
You perform this calculation as follows:
gen lab_percent = inc_lab / inc_total * 100
Find out the mean value of this figure (type: su lab_percent)

Data analysis: Data Access and Management using Stata

IT Services 34

6 Exploratory analyses – calculating sample
statistics

The analyses in this section are unweighted but in reality it may be necessary to use
weights if you are using survey data. Weighting is not considered within the remit
of this course. (Weighting is a procedure that corrects for the over-sampling of a
particular group and the deviation from proportional representation.)

6.1. Summarize (also summ or su)

For a range of basic statistics the summarize command is often the most useful.
This gives basic statistics and adding the detail option provides additional useful
information - percentiles, interquartile range, mean, median, standard deviation,
etc. The syntax is simple:

summarize hhvalue

summ hhvalue, detail

Many (if not most) commands in Stata can be abbreviated and these can be found
in the manuals and Stata help pages as the underlined part of the command: in the
case of summarize this can be shortened to summ as above (or in fact it can be

abbreviated further to sum or even su).

If we wanted summary statistics of house value for terraced houses only (i.e.
house_type==4) then we would simply need to add an ‘if’ condition to the syntax:

summ hhvalue if house_type==4, detail

Alternatively, bysort can be used to calculate summaries for every category of the
variable (as opposed to the example above where we used an ‘if’ condition to select
just one category of the house_type variable). Bysort is very handy – it carries out a
sort and at the same time conducts the command for the specified by-group(s). The
syntax to calculate summary statistics of house value for each different category of
house type separately would be as follows:

/*combine summarize with bysort*/

bysort house_type: summ hhvalue

Bysort can be abbreviated to bys to give:

bys house_type: summ hhvalue

Data analysis: Data Access and Management using Stata

IT Services 35

6.2. Centile

The ‘centile’ command can be used to give more information about the
percentile values within any variable if you want this information. For those
unfamiliar with percentiles, they can be thought of as giving the value of the
observation at a particular point in the distribution. For example, one common
usage of percentiles in to break the data into ten equally sized blocks – deciles –
and then to look at the differing compositions of the bottom or top deciles. Another
use of centiles is to obtain the values of the median and interquartile range
(although this can also be obtained with summarize, detail). The syntax to do
this is:

centile hhvalue, c(25 50 75)

If we wanted to calculate values for each centile then the syntax would be:

centile hhvalue, c(10 20 30 40 50 60 70 80 90)

This could be shortened to:

centile hhvalue, c(10(10)90)

The first number in the brackets tells Stata which centile to begin with (10), the
number in the central brackets tells Stata the size of the increments to move in (10)
and the final number tells Stata which centile to go up to (90). This syntax
therefore gives us the value for the deciles within this variable.

6.3. Xtile

‘xtile’ is used to create deciles, quintiles or other groupings. Whilst ‘centile’
tells us about the values of these groupings, xtile places our observations into the
groupings. For example, if we wanted to divide the houses within the data into ten
groups based upon their house value (i.e. deciles) and where group one was the
10% of houses with the lowest value and group 10 was the 10% of houses with the
highest value then we could use xtile. The syntax would be:

xtile hhvalue_decile = hhvalue, nq(10)

If we wanted to create 5 groups of data (i.e. quintiles) then we would change the
nq(10) to nq(5), and so on.

Data analysis: Data Access and Management using Stata

IT Services 36

6.4. Tabulate – tables of frequencies and percentages

‘Tabulate’ is a commonly used command that gives tables of frequencies and
percentages, either one-way or two-way. To get a simple one-way table of the
number of rooms in the accommodation (rooms) for example the syntax is:

/**one-way tables - tabulate**/

tabulate rooms

If we thought that the number of rooms was likely to differ according to the type of
house then we could do a two-way table of these two variables:

 /**two-way tables**/

 tab rooms house_type

‘Tabulate’ gives us frequencies by default but we can add in column or row
percentages too, if we wish, by adding these as options. By default, tabulate does
not report missing values and it is often sensible to report these so that analyses
are not skewed by failing to consider any missing values. To include column
percentages and to report missing cases within the table too, we would type:

/*include column percentages*/

tab rooms house_type, col miss

and to also add row and column percentages and take out the frequencies the
syntax would be:

/*include row and column percentages*/

tabulate rooms house_type, col miss row nofreq

tab rooms house_type, row col chi2

/*gives you frequencies, row and column percentages and strength of

association*/

6.5. Tabstat

‘Tabstat’ is another command which creates tables of summary statistics. ‘Tabstat’
has the advantage of being particularly flexible: it allows you to run calculations for
more than one variable at a time and to generate a number of different statistics
which the user specifies.

For example, if we wanted to know the mean, range, min, max, standard deviation,
median and interquartile range of the house value and house cost variables then
this is easily done with ‘tabstat’:

Data analysis: Data Access and Management using Stata

IT Services 37

tabstat hhvalue hhcost, ///

 stats(mean range min max sd p25 median p75)

Instead of using the bysort option at the start of the command line many commands
also accept a by option to generate summaries by category:

tabstat hhvalue, by (house_type) ///

stats(mean min max range sd median p25 p75)

The order of the options does not matter and so we could equally have written:

tabstat hhvalue, ///

stats(mean min max range sd median p25 p75) by(house_type)

6.6. Table

The ‘table’ command can also be used to provide statistical data for variables,

many of which can also be produced using ‘tabstat’ with ‘bysort’ or the
‘by’ option. The syntax structure for the ‘table’ command is as follows, where
c refers to the content which you want in the columns and the variables for which
you want output for. Therefore, if we wanted to know the mean house value and
standard deviation of the house value for each type of housing then the syntax
would be:

table house_type, c(mean hhvalue sd hhvalue)

Note that the required summary statistic needs to be specified for each variable.

If we suspected that these values differed according to whether the property had a
garden or not then we could run syntax with the garden variable as the by option.
For each housing type, the syntax would tell us the mean number of rooms as well
as the mean and standard deviation of house value for properties of each type with
and without a garden:

/*are the values different for homes with and without a garden?*/

table house_type, c(mean hhvalue sd hhvalue) by(garden)

As mentioned above, the bysort option can also be used at the start of the command
line as well as at its end – in many instances the exact syntax used will depend upon
what works best in the situation needed. The syntax below is therefore equivalent
to the previous syntax (although the output generated will be presented slightly
differently):

bys garden: table house_type, c(mean hhvalue sd hhvalue)

Data analysis: Data Access and Management using Stata

IT Services 38

Note that ‘tabulate’ and ‘table’ are different commands – ‘tabulate’
produces frequencies and row/column percentages whilst ‘table’ (and

‘tabstat’) produces summary statistics (mean, median, range, standard
deviation, percentiles, etc).

6.7. Statsby

Finally, another command which is useful for creating a file of various summary
statistics by groups is ‘statsby’, although this is more difficult to use. Every
analysis command in Stata (e.g. summarize, tablehis, regress, etc) saves results,
meaning that the results you see on the screen are temporarily held in memory and
it is possible for the user to access them and use them. Just to note that
‘statsby’ is a command which makes use of these saved results when analysing
by sub-groups.

The basic structure of the command is:

statsby [exp_list] [, options] : command

For example, to analyse labour income for each house type using the ‘summarize,

detail’ command and to save all the statistics generated this command type:

statsby , by(house_type) ///

 saving("H:\Output\income by house type.dta"): ///

 summ inc_lab, detail

Note that the [exp_list] part is blank in the above example so by default the
command saves all the statistics generated by summarize, detail.

If only the mean and median were required then you could type:

statsby mean = r(mean) median = r(p50), ///

by(house_type) ///

saving("H:\Output\income by house type trim.dta", replace): ///

summ inc_lab, detail

The same principle applies to any analysis command, not just to summarize as used
in this example, as each analysis command saves results. The ‘statsby’ command is
flexible but can be complex so it is worth checking Stata’s help menu or the
manuals for more details if you need to use this command.

Data analysis: Data Access and Management using Stata

IT Services 39

6.8. Drawing a scatterplot

You may want to examine the relationship between the variables through a
scatterplot. For example, we can hypothesize that as the number of rooms in a
house increase, so does it price. To check this type:

graph twoway scatter hhvalue rooms

This will produce the following graph.

The graph shows that the relationship is far from linear and there are some notable
outliers.

More advanced plot options are covered in the additional Stata courses.

0

1
0

0
0
0
0

0
2
0

0
0
0
0

0
3
0

0
0
0
0

0
4
0

0
0
0
0

0

v
a
lu

e
 o

f
p
ro

p
e

rt
y
:

h
o
m

e
 o

w
n
e
rs

0 5 10 15 20
number of bedrooms

Data analysis: Data Access and Management using Stata

IT Services 40

Exercise 4 Summarize the data (20 minutes)

 Read the bhps file in again to ensure you are using the original data

 Perform univariate statistical analyses and produce summary tables

Task 1

 Use the summarize command to find the minimum, maximum and median
values of the hhcost variable.
Hint: use the detail option in the summarize command. The summarize
command is described in section 6.1.

Task 2

 Combine summarize with bysort to see how the minimum, maximum and
median house value varies according to whether house has a garden or
not.

Task 3

 What is the median value of a terraced house?
Hint: the median is the 50th percentile. Use the ‘detail’ option in the
summarize command.

Task 4

 Using tabulate, create a two-way table of details on car ownership within
the household (car_own) and whether the property has a garden (garden).
Hint: Details on the relevant Stata command are provided in section 6.4.

Task 5

 Use tabstat with the by option to calculate the mean, interquartile range
and standard deviation of the house value of each property type.

Hint: ‘by’ should come in the end. The relevant Stata command is described
in section 6.5

Task 6

 Run question 5 again but use the bysort option at the start of the
command line rather than the by(house_type) option.
Note how the presentation of the output is different but the values
calculated are identical.

Task 7

 Use xtile to create a new variable inc_total_decile which has 10 categories
representing the deciles of the total household income (inc_total). How
many cases are in each decile?
Hint: the xtile command is described in section 6.3. Use the tabulate
command to find the number of cases.

Data analysis: Data Access and Management using Stata

IT Services 41

Task 8

Use the ‘table’ command to produce output showing the mean food
expenditure (exp_food), the maximum number of children in a
household(kids) and the median total household income (inc_total) for
different categories of car ownership (car_own).

Hint: details on the table command are provided in section 6.6. Use the
help function (type help table) to find out how to generate the different
summary statistics.

Task 9

 Create a scatter plot with the number of rooms (room) on the y-axis and
the number of children (kids) per household on the x-axis
Hint: a brief summary of the scatter command is provided in section 6.8.

Data analysis: Data Access and Management using Stata

IT Services 42

7 Appendices

7.1. Help in Stata

This course is part of a series of Stata courses run through the IT Learning Centre which
are designed to provide sufficient knowledge for people to become comfortable users of
Stata for a range of intermediate and advanced tasks. Details are on the IT Learning Centre
website; courses will be repeated each term.

There is also plenty of Stata help available in other places if you need it:

 The ‘help’ menu in the main Stata window
o contains options for ‘search commands’ if you want to find out details and

exact syntax for a particular command (this is similar to the material in the
manuals but there is often more detail and examples here than in the
manual)

o allows you to search the net or FAQs
 You can just type help and then the name of the command into the command

window and this will take you to the help pages for that command
 The manuals are arranged alphabetically and provide much of the information that

is in the help menu
 There is plenty of material on Google – often helpful if you’re sure there’s a

command to do it but just can’t remember its name
 UCLA web resources are very good:

http://statcomp.ats.ucla.edu/stata/default.htm
 The Princeton website is good:

http://dss.princeton.edu/online_help/stats_packages/stata/

 Stata’s own website is good www.stata.com. In particular, they run NetCourses and
list short courses. Stata is unusual in that there is an active web community for
very keen users. One useful thing is that Stata users write programmes (ado-files)
to do particular tasks which are available online. These can be freely downloaded
to your PC so that you can use them in Stata – this is one benefit of the
programming flexibility of Stata and these .ado files can be handy for particular,
often difficult tasks. The fourth course in this series, Introduction to programming
in Stata, discusses .ado files.

7.2. Additional Literature

Baum, C. (2009). “An Introduction to Stata Programming”, Stata Press Publication

Long, S. and Freese, J. (2006). “Regression models for categorical dependent
variables using Stata”, Stata Press Publication

http://statcomp.ats.ucla.edu/stata/default.htm
http://dss.princeton.edu/online_help/stats_packages/stata/
http://www.stata.com/

Data analysis: Data Access and Management using Stata

IT Services 43

7.3. Variables in the Dataset

7.4. Answers to the exercises

A sheet with the answers to the exercises is provided at the end of the course.

country str3 %9s Country of interview
int_dur float %9.0g interview duration
int_place str6 %9s interview location
 estimates
hh_wt double %10.0g household weight -within uk
 income
inc_inv double %10.0g annual household investment
inc_bens double %10.0g annual household benefit income
inc_pens double %10.0g annual household pension income
 income
inc_nonlab double %10.0g annual household non-labour
inc_lab double %10.0g annual household labour income
 (1.9.2004-1.9.2005)
inc_total double %10.0g annual hh income
 age
wage byte %8.0g number in household of working
emp byte %8.0g number in employment in household
 household
pens byte %8.0g number over pensionable age in
kids byte %8.0g number of children in household
hhsize byte %8.0g number of persons in household
 outstanding
car_value long %12.0g value vehicle(s) less amount
car_own byte %22.0g car_own household member owns vehicle
 use
vehicle_access byte %8.0g veh_acc car or van available for private
 bill
exp_food int %8.0g total monthly food and grocery
total_mortgage long %12.0g total mortgage on all property
garden byte %8.0g gdn accom: has terrace/garden
toilet_shared byte %8.0g loo_sh accom: is indoor toilet shared
toilet_indoor byte %8.0g loo_in accom: has indoor toilet
 payment
monthly_mortg~e int %8.0g last total monthly mortgage
 property
hhcost long %12.0g original purchase price of
hhvalue long %12.0g value of property: home owners
tenure byte %20.0g tenure house owned or rented
rooms byte %8.0g number of bedrooms
house_type byte %20.0g hh_type type of accommodation
int_year int %8.0g year of interview
int_month byte %9.0g month month of interview
int_day byte %8.0g day of interview
hhid long %12.0g household identification number

variable name type format label variable label
 storage display value

Data analysis: Data Access and Management using Stata

IT Services 44

7.5. Do-file for this session
/* Stata Course 1: Introduction to Stata - Getting started and basic commands */

* Syntax file to accompany course booklet updated in January 2015 *

clear

set more off

set more on

/* open data set in STATA format from specified file location*/

use "H:\Data\Stata\Original\bhps.dta", clear

*If no file format is specified, Stata, by default, assumes that .dta

* format is

use "H:\Data\Stata\Original\bhps", clear

*opening data in excel format

import excel using "H:\Data\Excel\Original\excel_names.xls", ///

 clear firstrow

*the firstrow option is important to read in variable names saved in the

* first row of the data set. Compare results to:

import excel using "H:\Data\Excel\Original\excel_names.xls", ///

 clear firstrow

*save data in Stata format

save "H:\Data\Stata\Modified\bhps1.dta"

*if we wanted to make changes, and save the dataset again under the

* same name, we have to use the replace option:

save "H:\Data\Stata\Modified\bhps1.dta", replace

*to ensure the datasets can be used in previous versions of Stata

* (version 12 and earlier)

saveold "H:\Data\Stata\Modified\bhps_old.dta", replace

*save the data in Excel format:

export excel using "H:\Data\Excel\Modified\bhps1.xls", ///

 replace firstrow(variables)

*we could also save the variable lables in the first row of the excel sheet:

export excel using "H:\Data\Excel\Modified\bhps1_labs.xls", ///

 replace firstrow(varlabels)

**

*EXERCISE 1 – Go to page 16 of your course book

**

/**** Getting a feel for the data - taking a first look at the variables ****/

*make sure data is read in:

use "H:\Data\Stata\Original\bhps.dta", clear

*or - use the "change directory" option if data if opened from/ saved to a

* similar location

cd "H:\Data\Stata"

use "Original\bhps", clear

/*describe variables - this describes the variables and sets out what their

value labels are called*/

describe _all

describe hhid-garden

describe inc*

Data analysis: Data Access and Management using Stata

IT Services 45

/*list the value labels of house_type*/

label list hh_type

/*list the first ten values of house_type in the dataset*/

list house_type in 1/10

*or look at missing values specifically:

list hhid car_own if car_own == .

/*how many observations have house_type of value 4 (ie terraced house)*/

count if house_type==4

*codebook command

codebook car_own

**

**EXERCISE 2 – Go to page 23 of your course book

**

/***** Managing and manipulating the data - basic data management *****/

/***drop & keep***/

/*drop variables*/

drop monthly_mortgage total_mortgage car*

/*drop observations*/

describe house_type

label list hh_type

drop if house_type>999 | house_type==9 | (house_type>=13 & house_type <=15)

tab house_type, miss

*to see that categories 9, 13, 14, 15 are no longer in the dataset.

* missing data have also been deleted

/*NB normally missing is . and this is the highest numeric

value: beware! For a string variable missing is "" */

/*keep */

/*1. keep variables*/

keep hhid-garden inc* hh_wt-int_dur

/*2. keep observations if they are 2005 or 2006. NB: if condition requires

double == Alternatives are > < >= <= !=/~= */

keep if int_year == 2005 | int_year == 2006

/*brackets may be needed for more complex if statements*/

/*preserve and restore* - two important ways to come back to the original data.

However, do not always count on that. Always save a copy of your original file

to which you can come if need be. Remember to always preserve exactly before the

action you want remedied. Stata does not keep any 'preserve' memory.*/

use "H:\Data\Stata\Original\bhps.dta", clear

Data analysis: Data Access and Management using Stata

IT Services 46

preserve

drop pens

drop if car_own == 3

tab car_own

restore

tab car_own

/** browse **/

browse hhvalue house_type

*this makes it easier to look at certain variables only, and will be

* particularly useful when calculations/ derivations are to be validated

/***sort***/

use "H:\Data\Stata\Original\bhps.dta", clear

/* sort by house value (hhvalue) (sort does ascending sort. gsort with negative

sign used for descending sort (see below)*/

/*descending sort*/

sort garden

gsort +garden

gsort -hhvalue

/* sorting with multiple variables */

sort tenure hhvalue

gsort +tenure -hhvalue

/**generate**/

/*like many Stata commands generate can be abbreviated - gen is the abbreviated

command*/

/*make a new variable called int_year2 and set it equal to the value of int_year*/

gen int_year2=.

gen int_year3 =100

gen int_year4 = "two thousand and six" if int_year == 2006

*be careful to use quotation marks when creating string variables

/*generate/replace*/

/*NB replace writes over variables which already exist, usually . or 0.

Otherwise, be careful when writing over variables and it's usually safer to recode

into new variables*/

gen int_season=.

replace int_season=1 if int_month==1 | int_month==2 | int_month==3

replace int_season=2 if int_month==4 | int_month==5 | int_month==6

replace int_season=3 if int_month==7 | int_month==8 | int_month==9

replace int_season=4 if int_month==10 | int_month==11 | int_month==12

/* generating string variables*/

gen deprived = ""

replace deprived = "low income" if inc_lab < 10000

Data analysis: Data Access and Management using Stata

IT Services 47

replace deprived = "above 10000" if inc_lab >= 10000 & inc_lab !=.

/**label**/

/*label variable*/

label variable int_season "season of interview"

/*label values*/

/*adding value labels to variable codes - there are two steps to

attaching labels to a variable*/

/*Step one: define a label*/

label define seasons 1 spring 2 summer 3 autumn 4 winter

/*Step two: attach the label to the variable (note that it is therefore possible to

attach

this set of labels to more than one variable*/

label values int_season seasons

/**Alternatively, we could have used the recode command to do this - here we recode

into

a new variable which we make (int_season)**/

drop int_season

recode int_month (1 2 3=1 spring) (4/6=2 summer) (7/8 9=3 autumn) ///

 (10/12=4 winter)(.=.), gen(int_season2)

/*NB it is also possible to recode multiple variables with the same coding

structure

at the same time*/

/**rename**/

rename int_season season_of_interview

**

** EXERCISE 3 – Go to page 30 of your course book

**

/**** Exploratory analyses - simple statistics ****/

/**summarize (can be written out in full or abbreviated to summ)**/

summarize hhvalue

/*the detail option with summarize gives lots of useful information - percentiles,

interquartile range, mean, median, standard deviation, etc*/

summ hhvalue, detail

su hhvalue, detail

summ hhvalue if house_type==4, detail

label list hh_type

Data analysis: Data Access and Management using Stata

IT Services 48

*look only at terranced houses

bysort house_type: summ hhvalue

bys house_type: summ hhvalue

/**centile**/

centile hhvalue, c(10)

/*calculate median and interquartile range values*/

centile hhvalue,c(25 50 75)

/*calculate values for each centile between 10 and 90 i.e. start at the

first value (10) and move in increments of the value in brackets (10)

until reaching the third value (90)*/

centile hhvalue, c(10 20 30 40 50 60 70 80 90)

centile hhvalue, c(10(10)90)

/** xtile - creates new variables based on centiles**/

xtile hhvalue_decile=hhvalue, nq(10)

xtile hhvalue_quincile=hhvalue, nq(5)

/**one way tables - tabulate**/

tabulate rooms

/**two way tables**/

/*frequencies*/

tabulate rooms house_type

/*include column percentages*/

tabulate tenure garden,col

/*include row and column percentages*/

tabulate tenure garden,col row

*could also add some statistical tests:

tab tenure garden, row col chi2

/** There are often many ways of doing things in Stata **/

/*Summarize hhvalue by house type. bysort can be used with many

commands to run commands on bygroups (i.e. categories/sub-groups of a variable)*/

bysort house_type:summ hhvalue,detail

bys house_type:summ hhvalue,detail

/**tabstat - Another useful command which can be used to do similar things in

tabstat - this has a large range of statistics that can be selected as options**/

tabstat hhvalue hhcost, stats(mean range min max sd median p25 p75)

tabstat hhvalue, stats(mean min max sd p25 median p75) by(house_type)

*maybe this option produces the nicest output

Data analysis: Data Access and Management using Stata

IT Services 49

/**table command: NB that table and tabulate are different commands. Tabulate

 gives frequencies whilst table is used for more statistical analyses**/

table house_type,c(mean rooms mean hhvalue sd hhvalue)

/*are there values different for homes with and without a garden?*/

table house_type,c (mean rooms mean hhvalue sd hhvalue) by(garden)

/*or rather than using the by option at the end you could use the by sort option

at the start of the syntax line */

bys garden:table house_type,c (mean rooms mean hhvalue sd hhvalue)

/** statsby - to create datasets with the desired summary statistics **/

statsby , by(house_type) ///

 saving("H:\Output\income by house type.dta"): ///

 summ inc_lab, detail

*if only certain output is required, the following information can be provided:

statsby mean = r(mean) median = r(p50), by(house_type) ///

 saving("H:\Output\income by house type trim.dta", replace): ///

 summ inc_lab, detail

*Scatter plots:

*to look at the relationship between the value of a house and the number of

bedrooms

graph twoway scatter hhvalue rooms

**

**EXERCISE 4 – Go to page 38 of your course book

**

Data analysis: Data Access and Management using Stata

IT Services

Your safety is important

• Where is the fire exit?

• Beware of hazards:
Tripping over bags and coats

• Please report any equipment faults to us

• Let us know if you have any other concerns

Data analysis: Data Access and Management using Stata

IT Services

Your comfort is important

• The toilets are along the corridor outside the
lecture rooms.

• The rest area has vending machines and a water
cooler.

• The seats at the computers are adjustable.

• You can adjust the monitors for height, tilt and
brightness.

Today’s objectives

• To compile and execute .do files

• Read data into Stata

• To describe and list variables

• To perform some basic data manipulations

• To understand how to use basic univariate
statistical computations

• To save Stata .do files

Data analysis: Data Access and Management using Stata

IT Services

General command structure in Stata

command variable(s) [if] [in], options

Troubleshooting 1

Today:

During each practical today, we will be able to help you with any
problems you are experiencing.

After class

1. Make sure you correctly typed the command and variable
name(s) – command names should appear blue in the .do file

2. If you know the exact name of command that you are having
difficulties with try using Stata's help function.

Data analysis: Data Access and Management using Stata

IT Services

Resources 1

• Try searching Stata's website which has more detailed
information about the various commands.
http://www.stata.com/

• Consult Stata's official documentation which can be accessed
through the program (help menu) or download it free of
charge in PDF format on the official website.
http://www.stata.com/support/documentation/

• Search Stata's official mailing list archive. This resource is
extremely useful. http://www.stata.com/statalist/archive/

Resources 2

6. Search Stata's official mailing list archive. This
resource is extremely useful.
http://www.stata.com/statalist/archive/

7. Consult one of the many Stata textbooks, many of
which are available at our libraries.
http://www.stata.com/bookstore/

8. Sign up for Stata's official mailing list and ask a
question there. http://www.stata.com/statalist/

Conditional Statements
